Identifying cell-type-specific 3D chromatin interactions between regulatory elements can help decipher gene regulation and interpret disease-associated non-coding variants. However, achieving this resolution with current 3D genomics technologies is often infeasible given limited input cell numbers. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps, including regulatory interactions, from single-cell ATAC sequencing (scATAC-seq) data alone.
View Article and Find Full Text PDFBackground: Therapeutic lifestyle change can be challenging, and not every attempt is successful.
Purpose: To identify predictors of making progress toward lifestyle change among patients who participate in a lifestyle medicine program.
Methods: This was a single-center, retrospective cohort study of 205 adults who enrolled in a goal-directed, individualized, interprofessional lifestyle medicine program.
Background: Changes in lifestyle habits can reduce morbidity and mortality, but not everyone who can benefit from lifestyle intervention is ready to do so.
Purpose: To describe characteristics of patients who did and did not engage with a lifestyle medicine program, and to identify predictors of engagement.
Methods: This was a single-center, retrospective cohort study of 276 adult patients who presented for consultation to a goal-directed, individualized, interprofessional lifestyle medicine program.
The MRE11 complex (comprising MRE11, RAD50, and NBS1) is integral to the maintenance of genome stability. We previously showed that a hypomorphic mutant mouse strain ( ) was highly susceptible to oncogene-induced breast cancer. Here we used a mammary organoid system to examine which MRE11-dependent responses are tumor-suppressive.
View Article and Find Full Text PDFFunctional enhancer annotation is critical for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants. However, unbiased enhancer discovery in disease-relevant contexts remains challenging. To identify enhancers pertinent to diabetes, we conducted a CRISPR interference (CRISPRi) screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) with multilineage potential are critical for effective T cell reconstitution and restoration of the adaptive immune system after allogeneic Hematopoietic Cell Transplantation (allo-HCT). The Kit subset of HSCs is enriched for multipotential precursors, but their T-cell lineage potential has not been well-characterized. We therefore studied the thymic reconstituting and T-cell potential of Kit HSCs.
View Article and Find Full Text PDFTransposable elements (TEs) are abundant in the human genome, and they provide the sources for genetic and functional diversity. The regulation of TEs expression and their functional consequences in physiological conditions and cancer development remain to be fully elucidated. Previous studies suggested TEs are repressed by DNA methylation and chromatin modifications.
View Article and Find Full Text PDFThe intestinal immune system must establish tolerance to food antigens to prevent onset of allergic and inflammatory diseases. Peripherally generated regulatory T (pTreg) cells play an essential role in suppressing inflammatory responses to allergens; however, the antigen-presenting cell (APC) that instructs food-specific pTreg cells is not known. Here, we show that antigen presentation and TGF-β activation by a subset of RORγt antigen-presenting cells (APC), Thetis cells IV (TC IV), is required for food-induced pTreg cell differentiation and oral tolerance.
View Article and Find Full Text PDFFunctional enhancer annotation is a valuable first step for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants for investigation. However, unbiased enhancer discovery in physiologically relevant contexts remains a major challenge. To discover regulatory elements pertinent to diabetes, we conducted a CRISPR interference screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system.
View Article and Find Full Text PDFStandard scATAC sequencing (scATAC-seq) analysis pipelines represent cells as sparse numeric vectors relative to an atlas of peaks or genomic tiles and consequently ignore genomic sequence information at accessible loci. Here we present CellSpace, an efficient and scalable sequence-informed embedding algorithm for scATAC-seq that learns a mapping of DNA k-mers and cells to the same space, to address this limitation. We show that CellSpace captures meaningful latent structure in scATAC-seq datasets, including cell subpopulations and developmental hierarchies, and can score transcription factor activities in single cells based on proximity to binding motifs embedded in the same space.
View Article and Find Full Text PDFTo gain insight into how ERG translocations cause prostate cancer, we performed single cell transcriptional profiling of an autochthonous mouse model at an early stage of disease initiation. Despite broad expression of ERG in all prostate epithelial cells, proliferation was enriched in a small, stem-like population with mixed-luminal basal identity (called intermediate cells). Through a series of lineage tracing and primary prostate tissue transplantation experiments, we find that tumor initiating activity resides in a subpopulation of basal cells that co-express the luminal genes and (called Basal) but not in the larger population of classical + luminal cells.
View Article and Find Full Text PDFWe present a gene-level regulatory model, single-cell ATAC + RNA linking (SCARlink), which predicts single-cell gene expression and links enhancers to target genes using multi-ome (scRNA-seq and scATAC-seq co-assay) sequencing data. The approach uses regularized Poisson regression on tile-level accessibility data to jointly model all regulatory effects at a gene locus, avoiding the limitations of pairwise gene-peak correlations and dependence on peak calling. SCARlink outperformed existing gene scoring methods for imputing gene expression from chromatin accessibility across high-coverage multi-ome datasets while giving comparable to improved performance on low-coverage datasets.
View Article and Find Full Text PDFThe ENCODE Consortium's efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.
View Article and Find Full Text PDFTumors develop by invoking a supportive environment characterized by aberrant angiogenesis and infiltration of tumor-associated macrophages (TAMs). In a transgenic model of breast cancer, we found that TAMs localized to the tumor parenchyma and were smaller than mammary tissue macrophages. TAMs had low activity of the metabolic regulator mammalian/mechanistic target of rapamycin complex 1 (mTORC1), and depletion of negative regulator of mTORC1 signaling, tuberous sclerosis complex 1 (TSC1), in TAMs inhibited tumor growth in a manner independent of adaptive lymphocytes.
View Article and Find Full Text PDFThe Mre11 complex (comprising Mre11, Rad50, Nbs1) is integral to the maintenance of genome stability. We previously showed that a hypomorphic mutant mouse strain ( ) was highly susceptible to oncogene induced breast cancer. Here we used a mammary organoid system to examine which Mre11 dependent responses are tumor suppressive.
View Article and Find Full Text PDFThe identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone.
View Article and Find Full Text PDFThe four-dimensional nucleome (4DN) consortium studies the architecture of the genome and the nucleus in space and time. We summarize progress by the consortium and highlight the development of technologies for (1) mapping genome folding and identifying roles of nuclear components and bodies, proteins, and RNA, (2) characterizing nuclear organization with time or single-cell resolution, and (3) imaging of nuclear organization. With these tools, the consortium has provided over 2,000 public datasets.
View Article and Find Full Text PDFUnlabelled: The mechanisms underlying the ability of embryonic stem cells (ESCs) to rapidly activate lineage-specific genes during differentiation remain largely unknown. Through multiple CRISPR-activation screens, we discovered human ESCs have pre-established transcriptionally competent chromatin regions (CCRs) that support lineage-specific gene expression at levels comparable to differentiated cells. CCRs reside in the same topological domains as their target genes.
View Article and Find Full Text PDFRecent deep learning models that predict the Hi-C contact map from DNA sequence achieve promising accuracy but cannot generalize to new cell types and or even capture differences among training cell types. We propose Epiphany, a neural network to predict cell-type-specific Hi-C contact maps from widely available epigenomic tracks. Epiphany uses bidirectional long short-term memory layers to capture long-range dependencies and optionally a generative adversarial network architecture to encourage contact map realism.
View Article and Find Full Text PDFInflammation of non-barrier immunologically quiescent tissues is associated with a massive influx of blood-borne innate and adaptive immune cells. Cues from the latter are likely to alter and expand activated states of the resident cells. However, local communications between immigrant and resident cell types in human inflammatory disease remain poorly understood.
View Article and Find Full Text PDFTissue homeostasis is maintained after stress by engaging and activating the hematopoietic stem and progenitor compartments in the blood. Hematopoietic stem cells (HSCs) are essential for long-term repopulation after secondary transplantation. Here, using a conditional knockout mouse model, we revealed that the RNA-binding protein SYNCRIP is required for maintenance of blood homeostasis especially after regenerative stress due to defects in HSCs and progenitors.
View Article and Find Full Text PDF