Pulsed electromagnetic field (PEMF) is emerging as innovative treatment for regulation of inflammation, which could have significant effects on tissue regeneration. PEMF modulates inflammatory processes through the regulation of pro- and anti-inflammatory cytokine secretion during different stages of inflammatory response. Consistent outcomes in studies involving animal and human tissue have shown promise for the use of PEMF as an alternative or complementary treatment to pharmaceutical therapies.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation of synovium (synovitis), with inflammatory/immune cells and resident fibroblast-like synoviocytes (FLS) acting as major players in the pathogenesis of this disease. The resulting inflammatory response poses considerable risks as loss of bone and cartilage progresses, destroying the joint surface, causing joint damage, joint failure, articular dysfunction, and pre-mature death if left untreated. At the cellular level, early changes in RA synovium include inflammatory cell infiltration, synovial hyperplasia, and stimulation of angiogenesis to the site of injury.
View Article and Find Full Text PDFCurrent practices in allopathic medicine measure different types of energy in the human body by using quantum field dynamics involved in nuclear medicine, radiology, and imaging diagnostics. Once diagnosed, current treatments revert to biochemistry instead of using biophysics therapies to treat the disturbances in subtle energies detected and used for diagnostics. Quantum physics teaches us there is no difference between energy and matter.
View Article and Find Full Text PDFBackground: Interest in the use of extremely low-frequency (ELF) electromagnetic field (EMF) for the treatment of pain and inflammation is increasing due to the ability of this promising therapy to compete with pharmaceuticals without the adverse effects caused by drugs. However, there continues to be concerns regarding cytotoxic and genotoxic effects that may occur as a result of exposure to EMF.
Objective: To investigate this concern, we tested the effect of our known therapeutic 5 Hz, 0.
Directed cell migration and adhesion is essential to embryonic development, tissue formation and wound healing. For decades it has been reported that electric field (EF), magnetic field (MF) and electromagnetic field (EMF) can play important roles in determining cell differentiation, migration, adhesion, and evenwound healing. Combinations of these techniques have revealed new and exciting explanations for how cells move and adhere to surfaces; how the migration of multiple cells are coordinated and regulated; how cellsinteract with neighboring cells, and also to changes in their microenvironment.
View Article and Find Full Text PDFElectromagn Biol Med
February 2017
Traumatic spinal cord injury (SCI) is typically the result of direct mechanical impact to the spine, leading to fracture and/or dislocation of the vertebrae along with damage to the surrounding soft tissues. Injury to the spinal cord results in disruption of axonal transmission of signals. This primary trauma causes secondary injuries that produce immunological responses such as neuroinflammation, which perpetuates neurodegeneration and cytotoxicity within the injured spinal cord.
View Article and Find Full Text PDFContext • During cell-communication processes, endogenous and exogenous signaling affects normal and pathological developmental conditions. Exogenous influences, such as extra-low-frequency (ELF) electromagnetic fields (EMFs) have been shown to affect pain and inflammation by modulating G-protein coupling receptors (GPCRs), downregulating cyclooxygenase-2 (Cox-2) activity, and downregulating inflammatory modulators, such as tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) as well as the transcription factor nuclear factor kappa B (NF-κB). EMF devices could help clinicians who seek an alternative or complementary treatment for relief of patients chronic pain and disability.
View Article and Find Full Text PDFDuring the cell communication process, endogenous and exogenous signaling affect normal as well as pathological developmental conditions. Exogenous influences such as extra-low-frequency electromagnetic field (EMF) have been shown to effect pain and inflammation by modulating G-protein receptors, down-regulating cyclooxygenase-2 activity, and affecting the calcium/calmodulin/nitric oxide pathway. Investigators have reported changes in opioid receptors and second messengers, such as cyclic adenosine monophosphate (cAMP), in opiate tolerance and dependence by showing how repeated exposure to morphine decreases adenylate cyclase activity causing cAMP to return to control levels in the tolerant state, and increase above control levels during withdrawal.
View Article and Find Full Text PDFOxygen generating biomaterials represent a new trend in regenerative medicine that aims to generate and supply oxygen at the site of requirement, to support tissue healing and regeneration. To enhance the healing of dermal wounds, we have developed a highly portable, in situ oxygen generating wound dressings that uses sodium percarbonate (SPO) and calcium peroxide (CPO) as chemical oxygen sources. The dressing continuously generated oxygen for more than 3 days, after which it was replaced.
View Article and Find Full Text PDFHuman bone marrow stromal cells (hBMSCs, also known as bone marrow-derived mesenchymal stem cells) are a population of progenitor cells that contain a subset of skeletal stem cells (hSSCs), able to recreate cartilage, bone, stroma that supports hematopoiesis and marrow adipocytes. As such, they have become an important resource in developing strategies for regenerative medicine and tissue engineering due to their self-renewal and differentiation capabilities. The differentiation of SSCs/BMSCs is dependent on exposure to biophysical and biochemical stimuli that favor early and rapid activation of the in vivo tissue repair process.
View Article and Find Full Text PDFObjectives: To evaluate the PSA in a large population of Brazilian men undergone to check up, and correlate the PSA cutoffs with prostate size and urinary symptoms.
Materials And Methods: This is a cross sectional study performed with men between 40 and 70 years undergone to check-up. All men were undergone to urological evaluation, digital rectal examination, prostate-specific antigen, and ultrasonography The exclusion criteria were men who used testosterone in the last six months, or who were using 5 alpha-reductase inhibitors.
In 2012, about 16487 people received kidney transplants in the United States, whereas 95022 candidates were on the waiting list by the end of the year. Despite advances in renal transplant immunology, approximately 40% of recipients will die or lose graft within 10 years. The limitations of current therapies for renal failure have led researchers to explore the development of modalities that could improve, restore, or replace the renal function.
View Article and Find Full Text PDFOrganogenesis
February 2016
Purpose: To evaluate the morphological and histological changes induced by PGA scaffold seeded with autologous adipose or muscle derived stem cells implanted on rabbit bladder wall.
Material And Methods: Adipose derived stem cells (ADSCs) were obtained from the inguinal fat of eight rabbits and muscle derived stem cells (MDSCs) from the anterior tibial muscle of other eight rabbits. After culture and isolation, the cells were stained with Vybrant Red CM DiI and then implanted at third passage.
In the United States, more than 2600 kidneys are discarded annually, from the total number of kidneys procured for transplant. We hypothesized that this organ pool may be used as a platform for renal bioengineering and regeneration research. We previously showed that decellularization of porcine kidneys yields renal extracellular matrix (ECM) scaffolds that maintain their basic components, support cell growth and welfare in vitro and in vivo, and show an intact vasculature that, when such scaffolds are implanted in vivo, is able to sustain physiological blood pressure.
View Article and Find Full Text PDFInterest in magnetic field (MF) therapy has increased rapidly in recent years as research shows that this noninvasive, cost-effective modality might be safer than drugs and surgical procedures for reduction of inflammation. Inflammation is a signal-mediated response to tissue invasion by pathogens or toxins or to injury or physical stresses. The immune response plays a pivotal role in reaction to insult, which triggers an inflammatory response almost immediately.
View Article and Find Full Text PDFIn the treatment of bacterial infections, antibiotics have proven to be very effective, but the way in which antibiotics are dosed can create a lag time between the administration of the drug and its absorption at the site of insult. The time it takes an antibiotic to reach therapeutic levels can often be significantly increased if the vascular system is compromized. Bacteria can multiply pending the delivery of the drug, therefore, developing treatments that can inhibit the inflammatory response while waiting for antibiotics to take effect could help prevent medical conditions such as septic shock.
View Article and Find Full Text PDFThe present review aims to illustrate the strategies that are being implemented to regenerate or bioengineer livers for clinical purposes. There are two general pathways to liver bioengineering and regeneration. The first consists of creating a supporting scaffold, either synthetically or by decellularization of human or animal organs, and seeding cells on the scaffold, where they will mature either in bioreactors or in vivo.
View Article and Find Full Text PDFIntroduction: The most critical issue to organ transplantation is the identification of new sources of organs. The present manuscript illustrates the state-of-the-art regenerative medicine (RM) investigations aiming to manufacturing abdominal organs for transplant purposes.
Areas Covered: This manuscript focuses on research in the bioengineering and regeneration of kidneys, insulin-producing cells, livers and small bowel.
Electromagn Biol Med
March 2013
The aim of this feasibility study was to determine the effectiveness of a commercially manufactured magnetic field (MF) device as an adjunct to pharmaceuticals during acute phase inflammatory response. The goal was to determine if inflammatory response interleukins IL-1, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α) would be affected by a 30 Hz time-varying magnetic field (MF). RAW 264.
View Article and Find Full Text PDFThe present review aims to illustrate the strategies that are being implemented in regenerative medicine to treat diseases that affect the digestive tract. Possible avenues are twofold: organ bioengineering, where cells are seeded on biological or synthetic scaffolding materials ex vivo and allowed to either mature in bioreactors or be implanted without undergoing any maturation; and regeneration per se, where the diseased tissue or organ is regenerated by recapitulation of its multi-step ontogenesis. This latter avenue may be induced either in vivo or ex vivo.
View Article and Find Full Text PDFToday's medicine is in the midst of an undeniable crisis. Calls to reform healthcare are in the forefront of economic and political discussions worldwide. Economic pressures reduce the amount of time physicians can spend with patients contributing to burnout among medical staff and endangering the patient iatrogenically.
View Article and Find Full Text PDF