Publications by authors named "Christina L Parker"

Despite their exceptional potencies, the broad tropism of most commonly used lentivirus (LV) vectors limits their use for targeted gene delivery We hypothesized that we could improve the specificity of LV targeting by coupling (i) reduction of their binding to off-target cells with (ii) redirection of the vectors with a bispecific antibody (bsAb) that binds both LV and receptors on target cells. As a proof of concept, we pseudotyped nonreplicating LV using a mutated Sindbis envelope (mSindbis) with ablated binding to native receptors, while retaining the capacity to facilitate efficient fusion and endosomal escape. We then evaluated the transduction potencies of the mSindbis LV for HER2-positive (HER2) (SKBR3) breast and HER2-negative (HER2) (A2780) cells when redirected with different bsAbs.

View Article and Find Full Text PDF

Pretargeting is an increasingly explored strategy to improve nanoparticle targeting, in which pretargeting molecules that bind both selected epitopes on target cells and nanocarriers are first administered, followed by the drug-loaded nanocarriers. Bispecific antibodies (bsAb) represent a promising class of pretargeting molecules, but how different bsAb formats may impact the efficiency of pretargeting remains poorly understood, in particular Fab valency and Fc receptor (FcR)-binding of bsAb. We found the tetravalent bsAb markedly enhanced PEGylated nanoparticle binding to target HER2 cells relative to the bivalent bsAb in vitro.

View Article and Find Full Text PDF

Mucus represents a major barrier to sustained and targeted drug delivery to mucosal epithelium. Ideal drug carriers should not only rapidly diffuse across mucus, but also bind the epithelium. Unfortunately, ligand-conjugated particles often exhibit poor penetration across mucus.

View Article and Find Full Text PDF

Unlabelled: Pretargeting represents a promising strategy to enhance delivery of nanoparticles. The strategy involves first introducing bispecific antibodies or fusion proteins (BFP) that can bind specific epitopes on target cells with one arm, and use the other arm to capture subsequently administered effector molecules, such as radionuclides or drug-loaded nanoparticles. Nevertheless, it remains unclear whether BFP that bind slowly- or non-internalizing epitopes on target cells can facilitate efficient intracellular delivery.

View Article and Find Full Text PDF

Tumor heterogeneity, which describes the genetically and phenotypically distinct subpopulations of tumor cells present within the same tumor or patient, presents a major challenge to targeted delivery of diagnostic and/or therapeutic agents. An ideal targeting strategy should deliver a given nanocarrier to the full diversity of cancer cells, which is difficult to achieve with conventional ligand-conjugated nanoparticles. We evaluated pretargeting (i.

View Article and Find Full Text PDF

Current therapies for sarcomas are often inadequate. This study sought to identify actionable gene targets by selective targeting of the molecular networks that support sarcoma cell proliferation. Silencing of asparagine synthetase (ASNS), an amidotransferase that converts aspartate into asparagine, produced the strongest inhibitory effect on sarcoma growth in a functional genomic screen of mouse sarcomas generated by oncogenic Kras and disruption of Cdkn2a.

View Article and Find Full Text PDF

Tumors are frequently characterized by genomically and phenotypically distinct cancer cell subpopulations within the same tumor or between tumor lesions, a phenomenon termed tumor heterogeneity. These diverse cancer cell populations pose a major challenge to targeted delivery of diagnostic and/or therapeutic agents, as the conventional approach of conjugating individual ligands to nanoparticles is often unable to facilitate intracellular delivery to the full spectrum of cancer cells present in a given tumor lesion or patient. As a result, many cancers are only partially suppressed, leading to eventual tumor regrowth and/or the development of drug-resistant tumors.

View Article and Find Full Text PDF

Coating nanoparticles with polyethylene glycol (PEG), which reduces particle uptake and clearance by immune cells, is routinely used to extend the circulation times of nanoparticle therapeutics. Nevertheless, due to technical hurdles in quantifying the extent of PEG grafting, as well as in generating very dense PEG coatings, few studies have rigorously explored the precise PEG grafting density necessary to achieve desirable "stealth" properties. Here, using polymeric nanoparticles with precisely tunable PEG grafting, we found that, for a wide range of PEG lengths (0.

View Article and Find Full Text PDF