Indo-Pacific lionfish have become invasive throughout the western Atlantic. Their predatory effects have been the focus of much research and are suggested to cause declines in native fish abundance and diversity across the invaded range. However, little is known about their non-consumptive effects, or their effects on invertebrates.
View Article and Find Full Text PDFCaribbean lionfish (Pterois spp.) are considered the most heavily impacting invasive marine vertebrate ever recorded. However, current management is largely inadequate, relying on opportunistic culling by recreational SCUBA divers.
View Article and Find Full Text PDFInvasive lionfish ( and ) have spread widely across the western Atlantic and are recognized as a major threat to native marine biodiversity. Although lionfish inhabit both shallow reefs and mesophotic coral ecosystems (MCEs; reefs from 30 to 150 m depth), the primary management response implemented by many countries has been diver-led culling limited to reefs less than 30 m. However, many reef fish undergo ontogenetic migrations, with the largest and therefore most fecund individuals found at greatest depths.
View Article and Find Full Text PDFMesophotic coral ecosystems (MCEs, reefs 30-150 m) are understudied, yet the limited research conducted has been biased towards large sessile taxa, such as scleractinian corals and sponges, or mobile taxa such as fishes. Here we investigate zooplankton communities on shallow reefs and MCEs around Utila on the southern Mesoamerican Barrier Reef using planktonic light traps. Zooplankton samples were sorted into broad taxonomic groups.
View Article and Find Full Text PDF