Keeping track of data semantics and data changes in the databases is essential to support retrospective studies and the reproducibility of longitudinal clinical analysis by preventing false conclusions from being drawn from outdated data. A knowledge model combined with a temporal model plays an essential role in organizing the data and improving query expressiveness across time and multiple institutions. This paper presents a modelling framework for temporal relational databases using an ontology to derive a shareable and interoperable data model.
View Article and Find Full Text PDFBackground: A large volume of heavily fragmented data is generated daily in different healthcare contexts and is stored using various structures with different semantics. This fragmentation and heterogeneity make secondary use of data a challenge. Data integration approaches that derive a common data model from sources or requirements have some advantages.
View Article and Find Full Text PDF