Publications by authors named "Christina Kendziorski"

Diffuse midline glioma, H3 K27-altered (DMG) are highly aggressive malignancies of the central nervous system (CNS) that primarily affect the pediatric population. Large scale spatial transcriptomic studies have implicated that tumor microenvironmental landscape plays an important role in determining the phenotypic differences in tumor presentation and clinical course, however, data connecting overall transcriptomic changes to the protein level is lacking. The NanoString GeoMx Digital Spatial Profiler platform was used to determine the spatial transcriptomic and proteomic landscape in a cohort of both pediatric and adult H3 K27-altered DMG biopsy samples.

View Article and Find Full Text PDF

Human papillomaviruses (HPV), most commonly HPV16, are associated with a subset of head and neck squamous cell carcinoma (HNSCC) tumors, primarily oropharyngeal carcinomas, with integration of viral genomes into host chromosomes associated with worse survival outcomes. We analyzed TCGA data and found that HPV+ HNSCC expressed higher transcript levels of the bromodomain and extra terminal domain (BET) family of transcriptional coregulators. The role of BET protein-mediated transcription of viral-cellular genes in the viral-HNSCC genomes needs to be better understood.

View Article and Find Full Text PDF

Asthma is a complex disease caused by genetic and environmental factors. Studies show that wheezing during rhinovirus infection correlates with childhood asthma development. Over 150 non-coding risk variants for asthma have been identified, many affecting gene regulation in T cells, but the effects of most risk variants remain unknown.

View Article and Find Full Text PDF

Microbiota play a critical role in the development and training of host innate and adaptive immunity. We present the cellular landscape of the upper airway, specifically the larynx, by establishing a reference single-cell atlas, while dissecting the role of microbiota in cell development and function at single-cell resolution. We highlight the larynx's cellular heterogeneity with the identification of 16 cell types and 34 distinct subclusters.

View Article and Find Full Text PDF
Article Synopsis
  • Granuloma annulare (GA) is a skin condition marked by granulomatous inflammation and influenced by both innate and adaptive immune responses, but its exact triggers and molecular mechanisms are not well understood.* -
  • Macrophages are the primary immune cells responsible for the inflammation in GA, yet little is known about how they become activated and how the condition manifests at the molecular level.* -
  • By studying the spatial gene expression of GA in six patients, researchers discovered a combination of immune signals and distinct macrophage polarization patterns, suggesting that key molecules like IFN-γ, TNF, and IL-32 play significant roles in the inflammation process related to GA.*
View Article and Find Full Text PDF

Diffuse midline glioma, -altered (DMG-Alt) are highly aggressive malignancies of the central nervous system (CNS) that primarily affect the pediatric population. Large scale spatial transcriptomic studies have implicated that tumor microenvironmental landscape plays an important role in determining the phenotypic differences in tumor presentation and clinical course, however, data connecting overall transcriptomic changes to the protein level is lacking. The NanoString GeoMx Digital Spatial Profiler platform was used to determine the spatial transcriptomic and proteomic landscape in a cohort of both pediatric and adult -altered DMG biopsy samples.

View Article and Find Full Text PDF

Stereotactic radiosurgery (SRS) has been shown to be efficacious for the treatment of limited brain metastasis (BM); however, the effects of SRS on human brain metastases have yet to be studied. We performed genomic analysis on resected brain metastases from patients whose resected lesion was previously treated with SRS. Our analyses demonstrated for the first time that patients possess a distinct genomic signature based on type of treatment failure including local failure, leptomeningeal spread, and radio-necrosis.

View Article and Find Full Text PDF

Motivation: Spatial transcriptomics (ST) experiments provide spatially localized measurements of genome-wide gene expression allowing for an unprecedented opportunity to investigate cellular heterogeneity and organization within a tissue. Statistical and computational frameworks exist that implement robust methods for pre-processing and analyzing data in ST experiments. However, the lack of an interactive suite of tools for visualizing ST data and results currently limits the full potential of ST experiments.

View Article and Find Full Text PDF

Asthma is a complex disease caused by genetic and environmental factors. Epidemiological studies have shown that in children, wheezing during rhinovirus infection (a cause of the common cold) is associated with asthma development during childhood. This has led scientists to hypothesize there could be a causal relationship between rhinovirus infection and asthma or that RV-induced wheezing identifies individuals at increased risk for asthma development.

View Article and Find Full Text PDF

Predicting which patients will progress to metastatic disease after surgery for non-metastatic clear cell renal cell carcinoma (ccRCC) is difficult; however, recent data suggest that tumor immune cell infiltration could be used as a biomarker. We evaluated the quantity and type of immune cells infiltrating ccRCC tumors for associations with metastatic progression following attempted curative surgery. We quantified immune cell densities in the tumor microenvironment and validated our findings in two independent patient cohorts with multi-region sampling to investigate the impact of heterogeneity on prognostic accuracy.

View Article and Find Full Text PDF

Spatial transcriptomics, the technology of visualizing cellular gene expression landscape in a cells native tissue location, has emerged as a powerful tool that allows us to address scientific questions that were elusive just a few years ago. This technological advance is a decisive jump in the technological evolution that is revolutionizing studies of tissue structure and function in health and disease through the introduction of an entirely new dimension of data, spatial context. Perhaps the organ within the body that relies most on spatial organization is the brain.

View Article and Find Full Text PDF

Integrated human papillomavirus (HPV-16) associated head and neck squamous cell carcinoma (HNSCC) tumors have worse survival outcomes compared to episomal HPV-16 HNSCC tumors. Therefore, there is a need to differentiate treatment for HPV-16 integrated HNSCC from other viral forms. We analyzed TCGA data and found that HPV+ HNSCC expressed higher transcript levels of the bromodomain and extra terminal domain (BET) family of transcriptional coregulators.

View Article and Find Full Text PDF

Stereotactic Radiosurgery (SRS) is one of the leading treatment modalities for oligo brain metastasis (BM), however no comprehensive genomic data assessing the effect of radiation on BM in humans exist. Leveraging a unique opportunity, as part of the clinical trial (NCT03398694), we collected post-SRS, delivered via Gamma-knife or LINAC, tumor samples from core and peripheral-edges of the resected tumor to characterize the genomic effects of overall SRS as well as the SRS delivery modality. Using these rare patient samples, we show that SRS results in significant genomic changes at DNA and RNA levels throughout the tumor.

View Article and Find Full Text PDF

Rhinoviruses infect ciliated airway epithelial cells, and rhinoviruses' nonstructural proteins quickly inhibit and divert cellular processes for viral replication. However, the epithelium can mount a robust innate antiviral immune response. Therefore, we hypothesized that uninfected cells contribute significantly to the antiviral immune response in the airway epithelium.

View Article and Find Full Text PDF

Recent advances in spatially resolved transcriptomics technologies enable both the measurement of genome-wide gene expression profiles and their mapping to spatial locations within a tissue. A first step in spatial transcriptomics data analysis is identifying genes with expression that varies spatially, and robust statistical methods exist to address this challenge. While useful, these methods do not detect spatial changes in the coordinated expression within a group of genes.

View Article and Find Full Text PDF

The larynx, trachea, and esophagus share origin and proximity during embryonic development. Clinical and experimental evidence support the existence of neurophysiological, structural, and functional interdependencies before birth. This investigation provides the first comprehensive transcriptional profile of all three organs during embryonic organogenesis, where differential gene expression gradually assembles the identity and complexity of these proximal organs from a shared origin in the anterior foregut.

View Article and Find Full Text PDF

Spatial transcriptomics is a powerful and widely used approach for profiling the gene expression landscape across a tissue with emerging applications in molecular medicine and tumor diagnostics. Recent spatial transcriptomics experiments utilize slides containing thousands of spots with spot-specific barcodes that bind RNA. Ideally, unique molecular identifiers (UMIs) at a spot measure spot-specific expression, but this is often not the case in practice due to bleed from nearby spots, an artifact we refer to as spot swapping.

View Article and Find Full Text PDF

Insulin secretion from pancreatic β cells is essential for glucose homeostasis. An insufficient response to the demand for insulin results in diabetes. We previously showed that β cell-specific deletion of Zfp148 (β-Zfp148KO) improves glucose tolerance and insulin secretion in mice.

View Article and Find Full Text PDF

Considerable effort has been devoted to refining experimental protocols to reduce levels of technical variability and artifacts in single-cell RNA-sequencing data (scRNA-seq). We here present evidence that equalizing the concentration of cDNA libraries prior to pooling, a step not consistently performed in single-cell experiments, improves gene detection rates, enhances biological signals, and reduces technical artifacts in scRNA-seq data. To evaluate the effect of equalization on various protocols, we developed Scaffold, a simulation framework that models each step of an scRNA-seq experiment.

View Article and Find Full Text PDF

The transcription factor NFATC2 induces β cell proliferation in mouse and human islets. However, the genomic targets that mediate these effects have not been identified. We expressed active forms of Nfatc2 and Nfatc1 in human islets.

View Article and Find Full Text PDF

Loss of mature β-cell function and identity, or β-cell dedifferentiation, is seen in both type 1 and type 2 diabetes. Two competing models explain β-cell dedifferentiation in diabetes. In the first model, β-cells dedifferentiate in the reverse order of their developmental ontogeny.

View Article and Find Full Text PDF

Background: Colony-stimulating factor 1 (CSF1) expression in the central nervous system (CNS) increases in response to a variety of stimuli, and CSF1 is overexpressed in many CNS diseases. In young adult mice, we previously showed that CSF1 overexpression in the CNS caused the proliferation of IBA1 microglia without promoting the expression of M2 polarization markers.

Methods: Immunohistochemical and molecular analyses were performed to further examine the impact of CSF1 overexpression on glia in both young and aged mice.

View Article and Find Full Text PDF

Motivation: Normalization to remove technical or experimental artifacts is critical in the analysis of single-cell RNA-sequencing experiments, even those for which unique molecular identifiers are available. The majority of methods for normalizing single-cell RNA-sequencing data adjust average expression for library size (LS), allowing the variance and other properties of the gene-specific expression distribution to be non-constant in LS. This often results in reduced power and increased false discoveries in downstream analyses, a problem which is exacerbated by the high proportion of zeros present in most datasets.

View Article and Find Full Text PDF

On the problem of scoring genes for evidence of changes in the distribution of single-cell expression, we introduce an empirical Bayesian mixture approach and evaluate its operating characteristics in a range of numerical experiments. The proposed approach leverages cell-subtype structure revealed in cluster analysis in order to boost gene-level information on expression changes. Cell clustering informs gene-level analysis through a specially-constructed prior distribution over pairs of multinomial probability vectors; this prior meshes with available model-based tools that score patterns of differential expression over multiple subtypes.

View Article and Find Full Text PDF