Publications by authors named "Christina K Lin"

Background: Heteroresistance (HR), the presence of antibiotic-resistant subpopulations within a primary isogenic population, may be a potentially overlooked contributor to newer β-lactam/β-lactamase inhibitor (BL/BLI) treatment failure in carbapenem-resistant Enterobacterales (CRE) infections.

Objectives: To determine rates of susceptibility and HR to BL/BLIs ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam in clinical CRE isolates.

Methods: The first CRE isolate per patient per year from two >500 bed academic hospitals from 1 January 2016 to 31 December 2021, were included.

View Article and Find Full Text PDF
Article Synopsis
  • Homelessness significantly increases the risk of infectious diseases, prompting a systematic review of related quantitative data from the U.S. and Canada.
  • Out of 250 reviewed articles, the majority focused on hepatitis C, with others covering diseases like COVID-19 and mpox, showing a higher prevalence of infections among homeless individuals compared to those who are housed.
  • Despite the progress in quantifying these risks, there is a need for more research on a wider range of pathogens affecting homeless populations that have not been adequately studied in North America.
View Article and Find Full Text PDF

Type 3 secretion systems (T3SS) are complex nanomachines that span the cell envelope and play a central role in the biology of Gram-negative pathogens and symbionts. In Pseudomonas aeruginosa, T3SS expression is strongly associated with human disease severity and with mortality in murine acute pneumonia models. Uniform exposure of isogenic cells to T3SS-activating signal results in heterogeneous expression of this critical virulence trait.

View Article and Find Full Text PDF

The Gram-negative opportunistic pathogen Pseudomonas aeruginosa exploits failures of barrier defense and innate immunity to cause acute infections at a range of anatomic sites. We review the defense mechanisms that normally protect against P. aeruginosa pulmonary infection, as well as the bacterial products and activities that trigger their activation.

View Article and Find Full Text PDF

Severe malaria, including cerebral malaria (CM) and placental malaria (PM), have been recognized to have many of the features of uncontrolled inflammation. We recently showed that in mice genetic susceptibility to the lethal inflammatory autoimmune disease, systemic lupus erythematosus (SLE), conferred resistance to CM. Protection appeared to be mediated by immune mechanisms that allowed SLE-prone mice, prior to the onset of overt SLE symptoms, to better control their inflammatory response to Plasmodium infection.

View Article and Find Full Text PDF

Malaria has had the largest impact of any infectious disease on shaping the human genome, exerting enormous selective pressure on genes that improve survival in severe malaria infections. Modern humans originated in Africa and lost skin melanization as they migrated to temperate regions of the globe. Although it is well documented that loss of melanization improved cutaneous Vitamin D synthesis, melanin plays an evolutionary ancient role in insect immunity to malaria and in some instances melanin has been implicated to play an immunoregulatory role in vertebrates.

View Article and Find Full Text PDF

Objective: The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria.

View Article and Find Full Text PDF