Publications by authors named "Christina K Haston"

Survival from partial-body irradiation (PBI) may be limited by the development of the late lung injury response of pneumonitis. Herein we investigated the hypothesis that acute hematopoietic depletion alters the onset and severity of lung disease in a mouse model. To establish depletion, C3H/HeJ mice received 8 Gy PBI with shielding of only the tibiae, ankles and feet.

View Article and Find Full Text PDF

Inbred strains of mice differ in susceptibility to both radiation-induced and bleomycin-induced pulmonary fibrosis and these traits have been mapped to a common locus on chromosome 6 which harbors genes of natural killer cell function. To investigate this putative locus of fibrosis susceptibility we assessed the fibrotic response of chromosome-6 consomic mice (B6.6A), and of mice deficient for natural killer cells, C57BL/6J Ly49A transgenic mice, after each of thoracic irradiation and bleomycin treatment via osmotic minipump.

View Article and Find Full Text PDF

Susceptibility to fibrotic lung disease differs among people and among inbred strains of mice exposed to bleomycin where C57BL/6J mice are susceptible and C3H/HeJ mice are spared fibrotic disease. Genetic mapping studies completed in offspring derived from these inbred strains revealed the inheritance of C57BL/6J alleles at loci, including the major locus on chromosome 17, called Blmpf1 bleomycin-induced pulmonary fibrosis 1, to be linked to pulmonary fibrosis in treated mice. In the present study, to reduce the interval of Blmpf1, we bred and phenotyped a panel of subcongenic mice with C3H/HeJ alleles in a C57BL/6J background.

View Article and Find Full Text PDF

Radiotherapy can result in lung diseases pneumonitis or fibrosis dependent on patient susceptibility. Herein we used inbred and genetically altered mice to investigate whether the tissue adaptive immune response to radiation injury influences the development of radiation-induced lung disease. Six inbred mouse strains were exposed to 18 Gy whole thorax irradiation and upon respiratory distress strains prone to pneumonitis with fibrosis presented an increased pulmonary frequency of Thelper (Th)17 cells which was not evident in strains prone solely to pneumonitis.

View Article and Find Full Text PDF

Cystic fibrosis transmembrane conductance regulator deficient mouse models develop phenotypes of relevance to clinical cystic fibrosis (CF) including airway hyperresponsiveness, small intestinal bacterial overgrowth and an altered intestinal microbiome. As dysbiosis of the intestinal microbiota has been recognized as an important contributor to many systemic diseases, herein we investigated whether altering the intestinal microbiome of BALB/c Cftr(tm1UNC) mice and wild-type littermates, through treatment with the antibiotic streptomycin, affects the CF lung, intestinal and bone disease. We demonstrate that streptomycin treatment reduced the intestinal bacterial overgrowth in Cftr(tm1UNC) mice and altered the intestinal microbiome similarly in Cftr(tm1UNC) and wild-type mice, principally by affecting Lactobacillus levels.

View Article and Find Full Text PDF

Background: The lung response to radiation exposure can involve an immediate or early reaction to the radiation challenge, including cell death and an initial immune reaction, and can be followed by a tissue injury response, of pneumonitis or fibrosis, to this acute reaction. Herein, we aimed to determine whether markers of the initial immune response, measured within days of radiation exposure, are correlated with the lung tissue injury responses occurring weeks later.

Methods: Inbred strains of mice known to be susceptible (KK/HIJ, C57BL/6J, 129S1/SvImJ) or resistant (C3H/HeJ, A/J, AKR/J) to radiation-induced pulmonary fibrosis and to vary in time to onset of respiratory distress post thoracic irradiation (from 10-23 weeks) were studied.

View Article and Find Full Text PDF

Mice with a null mutation in the cystic fibrosis transmembrane conductance regulator (Cftr) gene show intestinal structure alterations and bacterial overgrowth. To determine whether these changes are model-dependent and whether the intestinal microbiome is altered in cystic fibrosis (CF) mouse models, we characterized the ileal tissue and intestinal microbiome of mice with the clinically common ΔF508 Cftr mutation (FVB/N Cftr(tm1Eur)) and with Cftr null mutations (BALB/c Cftr(tm1UNC) and C57BL/6 Cftr(tm1UNC)). Intestinal disease in 12-week-old CF mice, relative to wild-type strain controls, was measured histologically.

View Article and Find Full Text PDF

Purpose: Radiation exposure can result in DNA damage but whether the extent of DNA damage correlates with the radiation-induced tissue injury in the lung is not known. We aimed to determine whether numbers of γH2AX foci, representing histone H2AX phosphorylation a marker of DNA damage, measured within days of radiation exposure, correlated with known later lung injury responses in eight inbred mouse strains.

Materials And Methods: Mice received 18 Gy pulmonary irradiation and numbers of γH2AX positive nuclei in the lung were immunohistochemically determined.

View Article and Find Full Text PDF

Biomarkers predicting for the radiation-induced lung responses of pneumonitis or fibrosis are largely unknown. Herein we investigated whether markers of oxidative stress and intracellular antioxidants, measured within days of radiation exposure, are correlated with the lung tissue injury response occurring weeks later. Mice of the eight inbred strains differing in their susceptibility to radiation-induced pulmonary fibrosis, and in the duration of asymptomatic survival, received 18 Gy whole thorax irradiation and were killed 6 h, 24 h, or 7 days later.

View Article and Find Full Text PDF

The specific pathways through which radiation produces the lung injuries of pneumonitis (alveolitis) and fibrosis are unknown but may involve an altered immune response. In this study, we investigated the hypothesis that the radiation-induced lung phenotype of Ja18(-/-) mice [which lack invariant natural killer T (iNKT) cells] is altered relative to that of C57BL/6J genetic background strain. After 18 Gy whole-thorax irradiation male C57BL/6J mice succumbed to respiratory distress at 28-30 weeks postirradiation and although confirmed by flow cytometric analysis to be deficient in iNKT cells, the postirradiation survival of Ja18(-/-) mice was not significantly different from that of C57BL/6J mice (P = 0.

View Article and Find Full Text PDF

Background: Airway hyperresponsiveness is a feature of clinical CF lung disease. In this study, we investigated whether the FVB/N ΔF508 CFTR mouse model has altered airway mechanics.

Methods: Mechanics were measured in 12-14week old FVB/N Cftr(tm1Eur) (ΔF508) mice and wildtype littermates using the FlexiVent small animal ventilator.

View Article and Find Full Text PDF

Background: Idiopathic pulmonary fibrosis is a disease characterized by alveolar epithelial cell injury, inflammatory cell infiltration and deposition of extracellular matrix in lung tissue. As mouse models of bleomycin-induced pulmonary fibrosis display many of the same phenotypes observed in patients with idiopathic pulmonary fibrosis, they have been used to study various aspects of the disease, including altered expression of microRNAs.

Results: In this work, microRNA expression profiling of the lungs from treated C57BL/6J mice, relative to that of untreated controls, was undertaken to determine which alterations in microRNAs could in part regulate the fibrosis phenotype induced by bleomycin delivered through mini-osmotic pumps.

View Article and Find Full Text PDF

The mechanism leading to the radiation-induced lung response of pneumonitis is largely unknown. Here we investigated whether treatment with 3,3'-diselenodipropionic acid (DSePA), which reduces radiation-induced oxidative stress in acute response models, decreases the lung response to irradiation. Mice of the C3H/HeJ (alveolitis/pneumonitis-responding) strain received 18 Gy whole-thorax irradiation, and a subset of these mice was treated with DSePA (2 mg/kg) three times per week, beginning at 2 hours after radiation treatment, and continuing in the postirradiation period until death because of respiratory distress symptoms.

View Article and Find Full Text PDF

Pulmonary fibrosis is a disease of significant morbidity, with no effective therapeutics and an as yet incompletely defined genetic basis. The chemotherapeutic agent bleomycin induces pulmonary fibrosis in susceptible C57BL/6J mice but not in mice of the C3H/HeJ strain, and this differential strain response has been used in prior studies to map bleomycin-induced pulmonary fibrosis susceptibility loci named Blmpf1 and Blmpf2. In this study we isolated the quantitative trait gene underlying Blmpf2 initially by histologically phenotyping the bleomycin-induced lung disease of sublines of congenic mice to reduce the linkage region to 13 genes.

View Article and Find Full Text PDF

Previous investigations have shown altered levels of complement components to be associated with radiation-induced lung disease. In this study we aimed to determine whether a deficiency in complement component 4b alters the lung response to irradiation of C57BL/6 mice. The pulmonary phenotype of C57BL/6 C4b(-/-) mice and their wild-type littermates was assessed following an 18 Gy single dose to the thoracic cavity.

View Article and Find Full Text PDF

Pulmonary fibrosis is a disease of significant morbidity, with an incompletely defined genetic basis. Here, we combine linkage and association studies to identify genetic variations associated with pulmonary fibrosis in mice. Mice were treated with bleomycin by osmotic minipump, and pulmonary fibrosis was histologically assessed 6 weeks later.

View Article and Find Full Text PDF

Background And Purpose: To identify genes which influence the fibrotic response to thoracic cavity radiotherapy, we combined a genome wide single nucleotide polymorphism (SNP) association evaluation of inbred strain response with prior linkage and gene expression data.

Material And Methods: Mice were exposed to 18Gy whole thorax irradiation and survival, bronchoalveolar cell differential, and histological alveolitis and fibrosis phenotypes were determined. Association analyses were completed with 1.

View Article and Find Full Text PDF

Purpose: We previously reported increased numbers of neutrophils to be associated with the development of the radiation-induced lung responses of alveolitis (pneumonitis) and fibrosis in mice. In the present study we investigated whether CXC receptor 1 and 2 antagonism with DF2156A, a small molecule inhibitor of neutrophil chemotaxis, or the neutrophil elastase inhibitor sivelestat decreases the lung response to irradiation.

Methods And Materials: KK/HIJ mice received 14 Gy whole-thorax irradiation, and a subset of them received drug treatment 3 times per week from the day of irradiation until they were killed because of respiratory distress symptoms.

View Article and Find Full Text PDF

The varying responses of inbred mouse models to radiation exposure present a unique opportunity to dissect the genetic basis of radiation sensitivity and tissue injury. Such studies are complementary to human association studies as they permit both the analysis of clinical features of disease, and of specific variants associated with its presentation, in a controlled environment. Herein I review how animal models are studied to identify specific genetic variants influencing predisposition to radiation-induced traits.

View Article and Find Full Text PDF

We previously observed the lungs of naive BALB/cJ Cftr(tm1UNC) mice to have greater numbers of lymphocytes, by immunohistochemical staining, than did BALB wild type littermates or C57BL/6J Cftr(tm1UNC) mice. In the present study, we initially investigated whether this mutation in Cftr alters the adaptive immunity phenotype by measuring the lymphocyte populations in the lungs and spleens by FACS and by evaluating CD3-stimulated cytokine secretion, proliferation, and apoptosis responses. Next, we assessed a potential influence of this lymphocyte phenotype on lung function through airway resistance measures.

View Article and Find Full Text PDF

The mechanisms leading to the radiation-induced lung responses of alveolitis and fibrosis are largely unknown. Herein we investigated whether CXC receptor 1 and 2 antagonism with CXCL8((3-72))K11R/G31P (G31P), a protein that reduces neutrophil chemotaxis in acute inflammatory response models, decreases the lung response to radiation. Mice of the AKR/J (alveolitis/pneumonitis responding) and KK/HIJ (fibrosis) strains received 18 Gy whole-thorax irradiation and a subset of these mice were treated with G31P (500 µg/kg) three times per week from the day of irradiation until euthanasia due to respiratory distress symptoms or 20 weeks after radiation treatment.

View Article and Find Full Text PDF

Cystic fibrosis (CF) intestinal disease is characterized by alterations in processes such as proliferation and apoptosis which are known to be regulated in part by microRNAs. Herein, we completed microRNA expression profiling of the intestinal tissue from the cystic fibrosis mouse model of cystic fibrosis transmembrane conductance regulator (Cftr) deficient mice (BALBc/J Cftr(tm1UNC)), relative to that of wildtype littermates, to determine whether changes in microRNA expression level are part of this phenotype. We identified 24 microRNAs to be significantly differentially expressed in tissue from CF mice compared to wildtype, with the higher expression in tissue from CF mice.

View Article and Find Full Text PDF

The intestinal phenotype of cystic fibrosis (CF) transmembrane conductance regulator deficient mice includes altered cell homeostasis and a distended crypt-villus axis, which, in previous work, was inversely proportional to body weight. To investigate this correlation, herein, we treated CF mice with IGF binding protein-3 (IGFBP-3), a protein which, as it has potent effects on cell proliferation and apoptosis, we hypothesized would alter the intestinal cell homeostasis, and assessed body weight. Six-week-old C57BL/6JxBALB F2 CF and WT mice received recombinant human IGFBP-3 (rhIGFBP-3, 20 mg/kg) or vehicle treatment, and weight gain, serum protein levels, and intestinal histology were assessed.

View Article and Find Full Text PDF

Purpose: To determine whether Toll-like receptor 2 or 4 genotype alters the lung response to irradiation in C57BL/6 mice using a model developing a phenotype that resembles radiotherapy-induced fibrosis in both histological characteristics and onset post-treatment.

Methods And Materials: The pulmonary phenotype of C57BL/6 mice deficient in each or both of these genes was assessed after an 18-Gy single dose to the thoracic cavity by survival time postirradiation, bronchoalveolar lavage cell differential, histological evidence of alveolitis and fibrosis, and gene expression levels, and compared with that of wild-type mice.

Results: The lung phenotype of Tlr4-deficient and Tlr2-deficient mice did not differ from that of wild-type mice in terms of survival time postirradiation, or by histological evidence of alveolitis or fibrosis.

View Article and Find Full Text PDF

Background: Mice with the cystic fibrosis transmembrane conductance regulator (Cftr) gene knocked out develop osteopenia. To determine whether this phenotype is present in cystic fibrosis mouse models with the DeltaF508 Cftr mutation we assessed the femora of adult FVB/N Cftr(tm1Eur) and C57BL/6 Cftr(tm1Kth) mice.

Methods: Bone disease, relative to littermate controls, was measured using histology, densitometry and quantitative imaging.

View Article and Find Full Text PDF