To streamline and improve throughput, the agar-based multiplexed opsonophagocytic killing assay (MOPA) was optimized and validated on a microcolony platform for use in the Phase III clinical trial program for V114, an MSD 15-valent pneumococcal conjugate vaccine candidate. The precision, dilutional linearity and specificity of the microcolony MOPA (mMOPA) were assessed for each serotype in validation experiments. All prespecified acceptance criteria on assay performance were satisfied.
View Article and Find Full Text PDFDespite marked regional differences in HIV susceptibility within the CNS, there has been surprisingly little exploration into the differential vulnerability among neuron types and the circuits they underlie. The dorsal striatum is especially susceptible, harboring high viral loads and displaying marked neuropathology, with motor impairment a frequent manifestation of chronic infection. However, little is known about the response of individual striatal neuron types to HIV or how this disrupts function.
View Article and Find Full Text PDFBackground: Medial prefrontal cortex (mPFC) dysfunction is present in heavy alcohol consumers. Dopamine signaling in mPFC is associated with executive functioning and affects drinking behavior; however, direct measurement of extracellular mPFC dopamine during appetitive and consummatory ethanol (EtOH) self-administration behavior has not been reported.
Methods: We used in vivo microdialysis in freely behaving, adult, male, Long Evans rats to determine extracellular dopamine concentration in the mPFC during operant self-administration of an EtOH-plus-sucrose or sucrose solution.
Memory deficits are characteristic of HIV-associated neurocognitive disorders (HAND) and co-occur with hippocampal pathology. The HIV-1 transactivator of transcription (Tat), a regulatory protein, plays a significant role in these events, but the cellular mechanisms involved are poorly understood. Within the hippocampus, diverse populations of interneurons form complex networks; even subtle disruptions can drastically alter synaptic output, resulting in behavioral dysfunction.
View Article and Find Full Text PDFFew preclinical studies have compared the relative therapeutic efficacy of medications used to treat opiate addiction in relation to neuroAIDS. Here we compare the ability of methadone and buprenorphine, and the prototypic opiate morphine, to potentiate the neurotoxic and proinflammatory ([Ca²⁺]i, ROS, H₂O₂, chemokines) effects of HIV-1 Tat in neuronal and/or mixed-glial co-cultures. Repeated observations of neurons during 48 h exposure to combinations of Tat, equimolar concentrations (500 nM) of morphine, methadone, or buprenorphine exacerbated neurotoxicity significantly above levels seen with Tat alone.
View Article and Find Full Text PDFRationale: Naltrexone, a non-selective opioid antagonist, decreases the euphoria and positive subjective responses to alcohol in heavy drinkers. It has been proposed that the μ-opioid receptor plays a role in ethanol reinforcement through modulation of ethanol-stimulated mesolimbic dopamine release.
Objectives: To investigate the ability of naltrexone and β-funaltrexamine, an irreversible μ-opioid specific antagonist, to inhibit ethanol-stimulated and morphine-stimulated mesolimbic dopamine release, and to determine whether opioid receptors on mesolimbic neurons contribute to these mechanisms.
Background: Ethanol (EtOH) affects prefrontal cortex functional roles such as decision making, working memory, and behavioral control. Yet, the pharmacological effect of EtOH on dopamine, a neuromodulator in the medial prefrontal cortex (mPFC), is unclear. Past studies exploring this topic produced conflicting outcomes; however, a handful of factors (temporal resolution, method of drug administration, estrous cycle) possibly contributed to these discrepancies.
View Article and Find Full Text PDFOperant self-administration methods are commonly used to study the behavioral and pharmacological effects of many drugs of abuse, including ethanol. However, ethanol is typically self-administered orally, rather than intravenously like many other drugs of abuse. The pharmacokinetics of orally administered drugs are more complex than intravenously administered drugs.
View Article and Find Full Text PDFBackground: Ethanol self-administration has been shown to increase dopamine in the nucleus accumbens; however, dopamine levels in the accumbal subregions (core, shell, and core-shell border) have not yet been measured separately in this paradigm. This study was designed to determine if dopamine responses during operant ethanol self-administration are similar in the core, core-shell border, and shell, particularly during transfer from the home cage to the operant chamber and during consumption of the drinking solution.
Methods: Six groups of male Long-Evans rats were trained to lever-press for either 10% sucrose (10S) or 10% sucrose + 10% ethanol (10S10E) (with a guide cannula above the core, core-shell border, or shell of the accumbens).