Activator of G protein signaling 3 (AGS3) is a guanine nucleotide dissociation inhibitor (GDI) which stabilizes the Gα(i/o) subunits as an AGS3/Gα(i/o)-GDP complex. It has recently been demonstrated in reconstitution experiments that the AGS3/Gα(i/o)-GDP complex may act as a substrate of resistance to inhibitors of cholinesterase 8A (Ric-8A), a guanine exchange factor (GEF) for heterotrimeric Gα proteins. Since the ability of Ric-8A to activate Gα(i/o) subunits that are bound to AGS3 in a cellular environment has not been confirmed, we thus examined the effect of Ric-8A on cAMP accumulation in HEK293 cells expressing different forms of AGS3 and Gα(i3).
View Article and Find Full Text PDFNerve growth factor (NGF)-mediated activation of mitogen-activated protein kinases (MAPK) is critical for differentiation and apoptosis of PC12 cells. Since NGF employs stress-activated c-Jun N-terminal kinase (JNK) to regulate both programmed cell death and neurite outgrowth of PC12 cells, we examined NGF-regulated JNK activity and the role of G(i/o) proteins. Induction of JNK phosphorylation by NGF occurred in a time- and dose-dependent manner and was partially inhibited by pertussis toxin (PTX).
View Article and Find Full Text PDFFive genes are thought to be required for transcription of methanol oxidation genes in Methylobacterium strains. These putative regulatory genes include mxcQE, which encode a putative sensor-regulator pair, and mxbDM and mxaB, whose functions are less well-understood. In this study, mxbDM in Methylobacterium extorquens AM1 were shown to be required for expression of a xylE transcriptional fusion to the structural gene for the large subunit of methanol dehydrogenase (mxaF), confirming the role of these genes in transcriptional regulation of mxaF.
View Article and Find Full Text PDF