The essential transcriptional repressor REST (repressor element 1-silencing transcription factor) plays central roles in development and human disease by regulating a large cohort of neural genes. These have conventionally fallen into the class of known, protein-coding genes; recently, however, several noncoding microRNA genes were identified as REST targets. Given the widespread transcription of messenger RNA-like, noncoding RNAs ("macroRNAs"), some of which are functional and implicated in disease in mammalian genomes, we sought to determine whether this class of noncoding RNAs can also be regulated by REST.
View Article and Find Full Text PDFThe maintenance of pluripotency and specification of cellular lineages during embryonic development are controlled by transcriptional regulatory networks, which coordinate specific sets of genes through both activation and repression. The transcriptional repressor RE1-silencing transcription factor (REST) plays important but distinct regulatory roles in embryonic (ESC) and neural (NSC) stem cells. We investigated how these distinct biological roles are effected at a genomic level.
View Article and Find Full Text PDFOct4, Sox2, and Nanog are key components of a core transcriptional regulatory network that controls the ability of embryonic stem cells to differentiate into all cell types. Here we show that Zfp281, a zinc finger transcription factor, is a key component of the network and that it is required to maintain pluripotency. Zfp281 was shown to directly activate Nanog expression by binding to a site in the promoter in very close proximity to the Oct4 and Sox2 binding sites.
View Article and Find Full Text PDFZfp206 (ZNF206 in human) encodes a zinc finger- and SCAN domain-containing protein that is highly expressed in pluripotent ESC. Upon differentiation of human and mouse ESC, Zfp206 expression is quickly repressed. Zfp206 was found to be expressed throughout embryogenesis but absent in adult tissues except testis.
View Article and Find Full Text PDFIt is well known that Oct4 and Sox2 play an important role in the maintenance of embryonic stem cell pluripotency. These transcription factors bind to regulatory regions within hundreds of target genes to control their expression. Zfp206 is a recently characterized transcription factor that has a role in maintaining stem cell pluripotency.
View Article and Find Full Text PDF