In maize, starch mutants have facilitated characterization of key genes involved in endosperm starch biosynthesis such as () and (). While many starch biosynthesis enzymes have been characterized, the mechanisms of certain genes (including ) are yet undefined, and very little is understood about the regulation of starch biosynthesis. As a model, we utilize commercially important sweet corn mutations, and , to genetically perturb starch production in the endosperm.
View Article and Find Full Text PDFSweet corn is one of the most important vegetables in the United States and Canada. Here, we present a de novo assembly of a sweet corn inbred line Ia453 with the mutated shrunken2-reference allele (Ia453-sh2). This mutation accumulates more sugar and is present in most commercial hybrids developed for the processing and fresh markets.
View Article and Find Full Text PDFThe radiation of angiosperms led to the emergence of the vast majority of today's plant species and all our major food crops. Their extraordinary diversification occurred in conjunction with the evolution of a more efficient vascular system for the transport of water, composed of vessel elements. The physical dimensions of these water-conducting specialized cells have played a critical role in angiosperm evolution; they determine resistance to water flow, influence photosynthesis rate, and contribute to plant stature.
View Article and Find Full Text PDF