Publications by authors named "Christina Enengl"

Poly(1,4-phenylene-ethynylene)-alt-poly(1,4-phenylene-vinylene) (PPE-PPV) copolymers have attracted quite a lot of attention in the last few years for electronic device applications owing to their enhanced fluorescence. In this work, we focus on one particular PPE-PPV copolymer with dissymmetrically substituted 1,4-phenylene-ethynylene and symmetrically substituted 1,4-phenylene-vinylene building units. Six successively performed cyclic voltammograms are presented, measured during the oxidation reactions.

View Article and Find Full Text PDF

In this work, we focus on the formation of different kinds of charge carriers such as polarons and bipolarons upon p-type doping (oxidation) of the organic semiconductor poly(3- hexylthiophene-2,5-diyl) (P3HT). We elucidate the cyclic voltammogram during oxidation of this polymer and present spectroscopic changes upon doping in the UV/Vis/near-IR range as well as in the mid-IR range. In the low-oxidation regime, two absorption bands related to sub-gap transitions appear, one in the UV/Vis range and another one in the mid-IR range.

View Article and Find Full Text PDF

The synthesis and characterization of a set of conjugated polymers, poly(1,4-phenylene-ethynylene)--poly(1,4-phenylene-vinylene)s (PPE-PPVs), with a dissymmetrical configuration (partial or total) of alkoxy side chains is reported. Five new polymers bearing octyloxy and/or octadecyloxy side chains at the phenylene-ethynylene and phenylene-vinylene segments, respectively, were obtained. Two symmetrical substituted polymers were used for comparison.

View Article and Find Full Text PDF

Spectroscopic measurements in the infrared range combined with electrochemistry are a powerful technique for investigation of organic semiconductors to track changes during oxidation and reduction (p- and n-doping) processes. For these measurements it is important that the studied material, mostly deposited as a thin film on an internal reflection element, does not dissolve during this characterization. In this study we introduce a technique that allows infrared spectroelectrochemical characterization of films of these materials for the first time.

View Article and Find Full Text PDF

Lead sulfide quantum dots represent an emerging photovoltaic absorber material. While their associated optical qualities are true for the colloidal solution phase, they change upon processing into thin-films. A detailed view to the optical key-parameters during solid-film development is presented and the limits and outlooks for this versatile and promising absorber are discussed.

View Article and Find Full Text PDF