Latrophilins are adhesion G-protein coupled receptors (aGPCRs) that control excitatory synapse formation. Most aGPCRs, including latrophilins, are autoproteolytically cleaved at their GPCR-autoproteolysis inducing (GAIN) domain, but the two resulting fragments remain noncovalently associated on the cell surface. Force-mediated dissociation of the fragments is thought to activate G-protein signaling, but how this mechanosensitivity arises is poorly understood.
View Article and Find Full Text PDFIntegrin-mediated focal adhesions are the primary architectures that transmit forces between the extracellular matrix (ECM) and the actin cytoskeleton. Although focal adhesions are abundant on rigid and flat substrates that support high mechanical tensions, they are sparse in soft three-dimensional (3D) environments. Here we report curvature-dependent integrin-mediated adhesions called curved adhesions.
View Article and Find Full Text PDFProtein dysregulation has been characterized as the cause of pathogenesis in many different diseases. For proteins lacking easily druggable pockets or catalytically active sites, targeted protein degradation is an attractive therapeutic approach. While several methods for targeted protein degradation have been developed, there remains a demand for lower molecular weight molecules that promote efficient degradation of their targets.
View Article and Find Full Text PDFMammalian cells adhere to the extracellular matrix (ECM) and sense mechanical cues through integrin-mediated adhesions . Focal adhesions and related structures are the primary architectures that transmit forces between the ECM and the actin cytoskeleton. Although focal adhesions are abundant when cells are cultured on rigid substrates, they are sparse in soft environments that cannot support high mechanical tensions .
View Article and Find Full Text PDFLatrophilins are adhesion G-protein coupled receptors (aGPCRs) that control excitatory synapse formation. aGPCRs, including latrophilins, are autoproteolytically cleaved at their GPCR-Autoproteolysis Inducing (GAIN) domain, but the two resulting fragments remain associated on the cell surface. It is thought that force-mediated dissociation of the fragments exposes a peptide that activates G-protein signaling of aGPCRs, but whether GAIN domain dissociation can occur on biologically relevant timescales and at physiological forces is unknown.
View Article and Find Full Text PDFTau aggregation into insoluble filaments is the defining pathological hallmark of tauopathies. However, it is not known what controls the formation and templated seeding of strain-specific structures associated with individual tauopathies. Here, we use cryo-electron microscopy (cryo-EM) to determine the structures of tau filaments from corticobasal degeneration (CBD) human brain tissue.
View Article and Find Full Text PDF