Publications by authors named "Christina E Cowan-Ellsberry"

The environmental sources, fate, transport, and routes of exposure of decamethylcyclopentasiloxane (D5; CAS no. 541-02-6) are reviewed in the present study, with the objective of contributing to effective risk evaluation and assessment of this and related substances. The present review, which is part of a series of studies discussing aspects of an effective risk evaluation and assessment, was prompted in part by the findings of a Board of Review undertaken to comment on a decision by Environment Canada made in 2008 to subject D5 to regulation as a toxic substance.

View Article and Find Full Text PDF

Models were developed to predict the bioconcentration of well-metabolized chemicals by rainbow trout. The models employ intrinsic clearance data from in vitro studies with liver S9 fractions or isolated hepatocytes to estimate a liver clearance rate, which is extrapolated to a whole-body biotransformation rate constant (kMET ). Estimated kMET values are then used as inputs to a mass-balance bioconcentration prediction model.

View Article and Find Full Text PDF

Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA).

View Article and Find Full Text PDF

The need to understand and estimate quantitatively the aggregate exposure to ingredients used broadly in a variety of product types continues to grow. Currently aggregate exposure is most commonly estimated by using a very simplistic approach of adding or summing the exposures from all the individual product types in which the chemical is used. However, the more broadly the ingredient is used in related consumer products, the more likely this summation will result in an unrealistic estimate of exposure because individuals in the population vary in their patterns of product use including co-use and non-use.

View Article and Find Full Text PDF

Fate and exposure modeling has not, thus far, been explicitly used in the risk profile documents prepared for evaluating the significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of persistent organic pollutants (POP) and persistent, bioaccumulative, and toxic (PBT) chemicals in the environment.

View Article and Find Full Text PDF

The focus of this research was to develop a model based solely on molecular descriptors capable of predicting fish bioconcentration factors (BCF). A fish BCF database was developed from high-quality, regulatory agency reviewed studies for pesticides based on the same laboratory protocol and the same fish species, Lepomis macrochirus. A commercially available software program was used to create a quantitative structure-activity relationship (QSAR) from 93 BCF studies based on unique molecules.

View Article and Find Full Text PDF

National and international chemical management programs are assessing thousands of chemicals for their persistence, bioaccumulative and environmental toxic properties; however, data for evaluating the bioaccumulation potential for fish are limited. Computer based models that account for the uptake and elimination processes that contribute to bioaccumulation may help to meet the need for reliable estimates. One critical elimination process of chemicals is metabolic transformation.

View Article and Find Full Text PDF

In recent decades, advances have been made in the processes used to identify substances as persistent, bioaccumulative, and toxic (PBT). Key processes have been identified, and scientifically sound assessment methods have been developed. Regulatory agencies around the world have sought practical methods for implementing policies to protect both environment and human health.

View Article and Find Full Text PDF