Identification of the key biotic and abiotic drivers within food webs is important for understanding species abundance changes in ecosystems, particularly across ecotones where there may be strong variation in interaction strengths. Using structural equation models (SEMs) and four decades of integrated data from the San Francisco Estuary, we investigated the relative effects of top-down, bottom-up, and environmental drivers on multiple trophic levels of the pelagic food web along an estuarine salinity gradient and at both annual and monthly temporal resolutions. We found that interactions varied across the estuarine gradient and that the detectability of different interactions depended on timescale.
View Article and Find Full Text PDFWe present the longest available dataset (by 15 years) of estuarine zooplankton abundance worldwide. Zooplankton have been monitored throughout the upper San Francisco Estuary from 1972 -present due to its status as a central hub of California water delivery and home to commercially important and endangered fishes. We integrated data from five monitoring programs, including over 300 locations, three size-classes of zooplankton targeted with different gears, over 80,000 samples, and over two billion sampled organisms.
View Article and Find Full Text PDF