Early evolution of mutualism is characterized by big and predictable adaptive changes, including the specialization of interacting partners, such as through deleterious mutations in genes not required for metabolic cross-feeding. We sought to investigate whether these early mutations improve cooperativity by manifesting in synergistic epistasis between genomes of the mutually interacting species. Specifically, we have characterized evolutionary trajectories of syntrophic interactions of Desulfovibrio vulgaris (Dv) with Methanococcus maripaludis (Mm) by longitudinally monitoring mutations accumulated over 1000 generations of nine independently evolved communities with analysis of the genotypic structure of one community down to the single-cell level.
View Article and Find Full Text PDFMicrobial populations can withstand, overcome and persist in the face of environmental fluctuation. Previously, we demonstrated how conditional gene regulation in a fluctuating environment drives dilution of condition-specific transcripts, causing a population of Desulfovibrio vulgaris Hildenborough (DvH) to collapse after repeatedly transitioning from sulfate respiration to syntrophic conditions with the methanogen Methanococcus maripaludis. Failure of the DvH to successfully transition contributed to the collapse of this model community.
View Article and Find Full Text PDFManaging trade-offs through gene regulation is believed to confer resilience to a microbial community in a fluctuating resource environment. To investigate this hypothesis, we imposed a fluctuating environment that required the sulfate-reducer to undergo repeated ecologically relevant shifts between retaining metabolic independence (active capacity for sulfate respiration) and becoming metabolically specialized to a mutualistic association with the hydrogen-consuming Strikingly, the microbial community became progressively less proficient at restoring the environmentally relevant physiological state after each perturbation and most cultures collapsed within 3-7 shifts. Counterintuitively, the collapse phenomenon was prevented by a single regulatory mutation.
View Article and Find Full Text PDFSystems scale models provide the foundation for an effective iterative cycle between hypothesis generation, experiment and model refinement. Such models also enable predictions facilitating the understanding of biological complexity and the control of biological systems. Here, we demonstrate the reconstruction of a globally predictive gene regulatory model from public data: a model that can drive rational experiment design and reveal new regulatory mechanisms underlying responses to novel environments.
View Article and Find Full Text PDFCellular responses to environmental stimuli are mediated by the co-ordinated activity of multiple control mechanisms, which result in the dynamics of cell function. Communication between different levels of regulation is central for this adaptability. The present study focuses on the interplay between transcriptional regulators and chromatin modifiers to co-operatively regulate transcription in response to a fatty acid stimulus.
View Article and Find Full Text PDFChz1p is a histone chaperone that interacts physically and functionally with the histone variant Htz1p, which has been implicated in establishing and maintaining boundaries between transcriptionally inactive heterochromatin and active euchromatin. To investigate the role of Chz1p in chromatin organization, we performed genome-wide expression arrays and chromatin immunoprecipitations of SIR complex components and modified histones in a CHZ1 deletion strain. Deletion of CHZ1 led to reduced ubiquitination of subtelomere-associated H2B, reduced subtelomeric H3K79 di-methylation, and increased binding of Sir3p, and Sir4p at telomere-distal euchromatin regions, correlating with decreased gene expression in subtelomeric regions.
View Article and Find Full Text PDF