Aquaporin-1 (AQP1) is a highly conserved water-channel protein, found to be expressed by astrocytes in adult humans and non-human primates (NHPs). Upregulation of cortical AQP1 expression occurs with cancer, injury, and neurodegenerative disease, but minimal information is available about the effects of normative aging on AQP1 expression. This study leverages tissues from the oldest-old rhesus macaques, some greater than 40 years of age, from the National Institute on Aging longitudinal study of caloric restriction (CR).
View Article and Find Full Text PDFNormal aging, though lacking widespread neurodegeneration, is nevertheless characterized by cognitive impairment in learning, memory, and executive function. The aged brain is spared from neuron loss, but white matter is lost and damage to myelin sheaths accumulates. This myelin damage is strongly associated with cognitive impairment.
View Article and Find Full Text PDFThe brain of higher organisms, such as nonhuman primates, is particularly rich in lipids, with a gray to white matter ratio of approximately 40 to 60%. White matter primarily consists of lipids, and during normal aging, it undergoes significant degeneration due to myelin pathology, which includes structural abnormalities, like sheath splitting, and local inflammation. Cognitive decline in normal aging, without neurodegenerative diseases, is strongly linked to myelin pathology.
View Article and Find Full Text PDFCalorie restriction (CR) is a robust intervention that can slow biological aging and extend lifespan. In the brain, terminally differentiated neurons and glia accumulate oxidative damage with age, reducing their optimal function. We investigated if CR could reduce oxidative DNA damage to white matter oligodendrocytes and microglia.
View Article and Find Full Text PDFCognitive impairment in learning, memory, and executive function occurs in normal aging even in the absence of Alzheimer's disease (AD). While neurons do not degenerate in humans or monkeys free of AD, there are structural changes including synapse loss and dendritic atrophy, especially in the dorsolateral prefrontal cortex (dlPFC), and these correlate with cognitive age-related impairment. Developmental studies revealed activity-dependent neuronal properties that lead to synapse remodeling by microglia.
View Article and Find Full Text PDFUsing exome sequencing, we analyzed 196 participants of the Cretan Aging Cohort (CAC; 95 with Alzheimer's disease [AD], 20 with mild cognitive impairment [MCI], and 81 cognitively normal controls). The APOE ε4 allele was more common in AD patients (23.2%) than in controls (7.
View Article and Find Full Text PDFAge-associated cognitive decline is common among otherwise healthy elderly people, even in the absence of Alzheimer's disease and neuron loss. Instead, white matter loss and myelin damage are strongly associated with cognitive decline. Myelin is subject to lifelong oxidative stress that damages the myelin sheath, which is repaired by cells of the oligodendrocyte lineage.
View Article and Find Full Text PDFMammalian glutamate dehydrogenase (hGDH1 in human cells) interconverts glutamate to α-ketoglutarate and ammonia while reducing NAD(P) to NAD(P)H. During primate evolution, humans and great apes have acquired hGDH2, an isoenzyme that underwent rapid evolutionary adaptation concomitantly with brain expansion, thereby acquiring unique catalytic and regulatory properties that permitted its function under conditions inhibitory to its ancestor hGDH1. Although the 3D-structures of GDHs, including hGDH1, have been determined, attempts to determine the hGDH2 structure were until recently unsuccessful.
View Article and Find Full Text PDFBackground: Apolipoprotein E gene (APOE) ɛ4 allele increases the risk for Alzheimer's disease (AD). Furthermore, among patients with cognitive impairment, longer sleep duration is associated with worse cognitive performance. To date, literature examining the associations between APOE ɛ4 allele and objective sleep duration is limited.
View Article and Find Full Text PDFExcitotoxicity is thought to play key roles in brain neurodegeneration and stroke. Here we show that neuroprotection against excitotoxicity by trophic factors EFNB1 and brain-derived neurotrophic factor (called here factors) requires formation of 'survival complexes' which are factor-stimulated complexes of -methyl-d-aspartate receptor with factor receptor and presenilin 1. Absence of presenilin 1 reduces the formation of survival complexes and abolishes neuroprotection.
View Article and Find Full Text PDFMicrovascular pathology and ischemic lesions contribute substantially to neuronal dysfunction and loss that lead to Alzheimer disease (AD). To facilitate recovery, the brain stimulates neovascularization of damaged tissue via sprouting angiogenesis, a process regulated by endothelial cell (EC) sprouting and the EphB4/ephrinB2 system. Here, we show that in cultures of brain ECs, EphB4 stimulates the VE-cadherin/Rok-α angiogenic complexes known to mediate sprouting angiogenesis.
View Article and Find Full Text PDFManganese (Mn) is an essential trace element that serves as co-factor for many important mammalian enzymes. In humans, the importance of this cation is highlighted by the fact that low levels of Mn cause developmental and metabolic abnormalities and, on the other hand, chronic exposure to excessive amounts of Mn is characterized by neurotoxicity, possibly mediated by perturbation of astrocytic mitochondrial energy metabolism. Here we sought to study the effect of Mn on the two human glutamate dehydrogenases (hGDH1 and hGDH2, respectively), key mitochondrial enzymes involved in numerous cellular processes, including mitochondrial metabolism, glutamate homeostasis and neurotransmission, and cell signaling.
View Article and Find Full Text PDFMammalian glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia, interconnecting carbon skeleton and nitrogen metabolism. In addition, it functions as an energy switch by its ability to fuel the Krebs cycle depending on the energy status of the cell. As GDH lies at the intersection of several metabolic pathways, its activity is tightly regulated by several allosteric compounds that are metabolic intermediates.
View Article and Find Full Text PDFParkinsonism Relat Disord
November 2012
In recent years two association studies investigating the HAP1 T441M (rs4523977) polymorphism as a potential modifying factor of the age at onset (AAO) of Huntington's disease (HD), have been reported. Initially evidence for association was found between the M441 risk allele and the AAO. Subsequently, a second study, although failing to replicate these findings, found evidence for association between the same risk allele and AAO of motor symptoms (mAAO).
View Article and Find Full Text PDF