Publications by authors named "Christina Deichmann"

A complex network of transcription factors regulates specification of neural crest cells at early neurula stage by stabilizing neural crest identity and activating neural crest effector genes so that distinct subpopulations evolve. In this network, c-myc acts on top of the gene hierarchy controlling snail2, AP2 and prohibitin1 (phb1) expression. While snail2 and AP2 are well studied neural crest specifier genes little is known about the role of phb1 in this process.

View Article and Find Full Text PDF

E-cadherin is a key cell-cell adhesion molecule but the impact of receptor density and the precise contribution of individual cadherin ectodomains in promoting cell adhesion are only incompletely understood. Investigating these mechanisms would benefit from artificial adhesion substrates carrying different cadherin ectodomains at defined surface density. We therefore developed a quantitative E-cadherin surface immobilization protocol based on the SNAP-tag technique.

View Article and Find Full Text PDF

We have demonstrated that the complementary combination of grazing incidence X-ray fluorescence (GIXF) with specular X-ray reflectivity (XRR) can be used to quantitatively determine the density profiles of Ni(2)(+) ions complexed with chelator headgroups as well as S atoms in recombinant proteins anchored to lipid monolayers at the air/water interface. First, we prepared phospholipid monolayers incorporating chelator lipid anchors at different molar fractions at the air/water interface. The fine-structures perpendicular to the global plane of monolayers were characterized by XRR in the presence of Ni(2)(+) ions, yielding the thickness, roughness, and electron density of the stratified lipid monolayers.

View Article and Find Full Text PDF
Article Synopsis
  • Investigating cohesive tissue sheets in controlled cultures is challenging due to complex intercellular interactions that are hard to replicate in lab conditions.
  • The study utilized supported lipid membranes with cadherin-11, a cell adhesion molecule, to immobilize pluripotent tissue sheets from Xenopus laevis embryos and confirmed the functionalization of these membranes.
  • The research showed that cell adhesion in the cultured tissue was influenced by cadherin-11 density, and the viability of the culture was evidenced by the formation of cellular projections, indicating successful differentiation of the tissue.
View Article and Find Full Text PDF

We have analyzed the evolution of fibroblast growth factor receptor (FGFR) tyrosine kinase genes throughout a wide range of animal phyla. No evidence for an FGFR gene was found in Porifera, but we tentatively identified an FGFR gene in the placozoan Trichoplax adhaerens. The gene encodes a protein with three immunoglobulin-like domains, a single-pass transmembrane, and a split tyrosine kinase domain.

View Article and Find Full Text PDF