Publications by authors named "Christina DeMaso"

We measured antibody binding to diverse norovirus virus-like particles over 12 months in 16 children. All had maternal antibodies at 2 months, with estimated lowest levels at 5 months of age. Antibody increases after 3 months suggested natural infections.

View Article and Find Full Text PDF

Background: An effective dengue vaccine should ideally induce broadly neutralizing antibody (nAb) responses against all 4 dengue virus (DENV) serotypes.

Methods: We characterized the specificity and breadth of the nAb response to TAK-003, a live-attenuated tetravalent dengue vaccine, in serum samples from phase 2 and 3 clinical trials.

Results: Microneutralization tests using postvaccination serum showed comparable neutralization against diverse DENV-1-4 genotypes.

View Article and Find Full Text PDF

Dengue virus cocirculates globally as four serotypes (DENV1 to -4) that vary up to 40% at the amino acid level. Viral strains within a serotype further cluster into multiple genotypes. Eliciting a protective tetravalent neutralizing antibody response is a major goal of vaccine design, and efforts to characterize epitopes targeted by polyclonal mixtures of antibodies are ongoing.

View Article and Find Full Text PDF

Dengue virus (DENV) and West Nile virus (WNV) are arthropod-transmitted flaviviruses that cause systemic vascular leakage and encephalitis syndromes, respectively, in humans. However, the viral factors contributing to these specific clinical disorders are not completely understood. Flavivirus nonstructural protein 1 (NS1) is required for replication, expressed on the cell surface, and secreted as a soluble glycoprotein, reaching high levels in the blood of infected individuals.

View Article and Find Full Text PDF

The emergence of Zika virus (ZIKV) in the Americas stimulated the development of multiple ZIKV vaccine candidates. We previously developed two related DNA vaccine candidates encoding ZIKV structural proteins that were immunogenic in animal models and humans. We sought to identify neutralizing antibody (NAb) properties induced by each vaccine that correlated with protection in nonhuman primates (NHPs).

View Article and Find Full Text PDF

Because antibodies are an important component of flavivirus immunity, understanding the antigenic structure of flaviviruses is critical. Compared to dengue virus (DENV), the loop containing the single N-linked glycosylation site on Zika virus (ZIKV) envelope (E) proteins extends further towards the DII fusion loop (DII-FL) on neighboring E proteins within E dimers on mature viruses. Although ZIKV is poorly neutralized by DII-FL antibodies, we demonstrated significantly increased neutralization sensitivity of ZIKV particles incorporating the DENV glycan loop.

View Article and Find Full Text PDF

Background: The Zika virus epidemic and associated congenital infections have prompted rapid vaccine development. We assessed two new DNA vaccines expressing premembrane and envelope Zika virus structural proteins.

Methods: We did two phase 1, randomised, open-label trials involving healthy adult volunteers.

View Article and Find Full Text PDF

Zika virus (ZIKV) has recently emerged as a pandemic associated with severe neuropathology in newborns and adults. There are no ZIKV-specific treatments or preventatives. Therefore, the development of a safe and effective vaccine is a high priority.

View Article and Find Full Text PDF

Zika virus (ZIKV) was identified as a cause of congenital disease during the explosive outbreak in the Americas and Caribbean that began in 2015. Because of the ongoing fetal risk from endemic disease and travel-related exposures, a vaccine to prevent viremia in women of childbearing age and their partners is imperative. We found that vaccination with DNA expressing the premembrane and envelope proteins of ZIKV was immunogenic in mice and nonhuman primates, and protection against viremia after ZIKV challenge correlated with serum neutralizing activity.

View Article and Find Full Text PDF

Unlabelled: Zika virus (ZIKV) is a flavivirus that has emerged as a global health threat due in part to its association with congenital abnormalities. Other globally relevant flaviviruses include dengue virus (DENV) and West Nile virus (WNV). High-resolution structures of ZIKV reveal many similarities to DENV and suggest some differences, including an extended glycan loop (D.

View Article and Find Full Text PDF

Recent epidemics of Zika virus (ZIKV) have been associated with congenital malformation during pregnancy and Guillain-Barré syndrome. There are two ZIKV lineages (African and Asian) that share >95% amino acid identity. Little is known regarding the ability of neutralizing antibodies elicited against one lineage to protect against the other.

View Article and Find Full Text PDF
Article Synopsis
  • Flaviviruses, like dengue virus, exhibit conformational flexibility in their structural proteins, which influences how they interact with antibodies.
  • Research using monoclonal antibody E111 revealed that the significant differences in neutralization between two DENV1 strains (West Pac-74 and 16007) are primarily due to a single amino acid difference (residue 204).
  • This amino acid variation not only affects susceptibility to neutralization by antibodies but also correlates with the stability of the virus, indicating that structural changes can impact antibody effectiveness and are important for vaccine development.
View Article and Find Full Text PDF

Several models of cell fate determination can be invoked to explain how single retinal progenitor cells (RPCs) produce different cell types in a terminal division. To gain insight into this process, the effects of the removal of a cell fate regulator, Notch1, were studied in newly postmitotic cells using a conditional allele of Notch1 (N1-CKO) in mice. Almost all newly postmitotic N1-CKO cells became rod photoreceptors, whereas wild-type (WT) cells achieved a variety of fates.

View Article and Find Full Text PDF

Filamins are long, flexible, multi-domain proteins composed of an N-terminal actin-binding domain (ABD) followed by multiple immunoglobulin-like repeats (IgFLN). They function to organize and maintain the actin cytoskeleton, to provide scaffolds for signaling components, and to act as mechanical force sensors. In this study, we used transcript sequencing and homology modeling to characterize the gene and protein structures of the C.

View Article and Find Full Text PDF

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution.

View Article and Find Full Text PDF