Background: Asthma in a mouse model spontaneously resolves after cessation of allergen exposure. We developed a mouse model in which asthma features persisted for 6 months after cessation of allergen exposure.
Objective: We sought to elucidate factors contributing to the persistence of asthma.
Background: TH2 cells can further differentiate into dual-positive TH2/TH17 cells. The presence of dual-positive TH2/TH17 cells in the airways and their effect on asthma severity are unknown.
Objective: We sought to study dual-positive TH2/TH17 cells in bronchoalveolar lavage (BAL) fluid from asthmatic patients, examine their response to glucocorticoids, and define their relevance for disease severity.
Purpose Of Review: The role of immunological memory formation focusing upon Th2 inflammatory responses in asthma is well supported and reviewed previously. Here, we review data supporting the establishment of a tissue-based signalling memory utilizing examples of in-vitro, in-vivo and clinical reports of sustained extracellular signal regulated kinase 1/2 (ERK1/2) activation in asthma.
Recent Findings: Endosomal recycling of receptors contributes to chronic signalling activation, presumably through increased receptor availability.
During peripheral immune activation caused by an infection or an inflammatory condition, the innate immune response signals to the brain and causes an up-regulation of central nervous system (CNS) cytokine production. Central actions of proinflammatory cytokines, in particular IL-1β, are pivotal for the induction of fever and fatigue. In the present study, the influence of peripheral chronic joint inflammatory disease in rheumatoid arthritis (RA) on CNS inflammation was investigated.
View Article and Find Full Text PDFChronic pain has profound effects on activity. Previous reports indicate chronic inflammatory conditions result in reduced activity which normalizes upon pain treatment. However, there is little systematic investigation of this process.
View Article and Find Full Text PDFIn this chapter, we describe the usage of this rheumatoid arthritis model to investigate pain-like behavior in mice, including the assessment of clinical changes and the time-dependent changes in nociceptive behavior during disease progresses.
View Article and Find Full Text PDFPersistent pain after resolution of clinically appreciable signs of arthritis poses a therapeutic challenge, and immunosuppressive therapies do not meet this medical need. To investigate this conversion to persistent pain, we utilized the K/BxN serum transfer arthritis model, which has persistent mechanical hypersensitivity despite the resolution of visible inflammation. Toll-like receptor (TLR) 4 has been implicated as a potential therapeutic target in neuropathic and other pain models.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic autoimmune arthritis that affects approximately 1% of the population. Synovial inflammation cannot fully explain the level of pain reported by patients and facilitation of pain processing at the spinal level has been implicated. We characterized the K/BxN serum transfer arthritis model as a model of joint inflammation-induced pain and examined pharmacologic responsiveness and spinal glia activation.
View Article and Find Full Text PDFWe previously demonstrated that activation of the Parathyroid Hormone Receptor (PTH1R) in osteoblastic cells increases the Notch ligand Jagged1 and expands hematopoietic stem cells (HSC) through Notch signaling. However, regulation of Jagged1 by PTH in osteoblasts is poorly understood. The present study demonstrates that PTH treatment increases Jagged1 levels in a subpopulation of osteoblastic cells in vivo and in UMR106 osteoblastic cells in vitro.
View Article and Find Full Text PDF