Hippocampal output influences memory formation in the neocortex, but this process is poorly understood because the precise anatomical location and the underlying cellular mechanisms remain elusive. Here, we show that perirhinal input, predominantly to sensory cortical layer 1 (L1), controls hippocampal-dependent associative learning in rodents. This process was marked by the emergence of distinct firing responses in defined subpopulations of layer 5 (L5) pyramidal neurons whose tuft dendrites receive perirhinal inputs in L1.
View Article and Find Full Text PDFIn the originally published version of this Article, incorrect references were cited on two occasions in the Results section. Under the subheading 'Ca activity in single dendrites and somata of L5 neurons', the final sentence of the second paragraph incorrectly cited reference 29 instead of reference 31. Under the subheading 'Spiking of L5 cell bodies is not influenced by spindles', the first sentence cited reference 30 instead of reference 29.
View Article and Find Full Text PDFHow sleep influences brain plasticity is not known. In particular, why certain electroencephalographic (EEG) rhythms are linked to memory consolidation is poorly understood. Calcium activity in dendrites is known to be necessary for structural plasticity changes, but this has never been carefully examined during sleep.
View Article and Find Full Text PDFThe differential regulation of the two major N-methyl-D-aspartate receptor (NMDAR) subunits GluN2A and GluN2B during development in forebrain pyramidal cells has been thoroughly investigated. In contrast, much less is known about the role of GluN2D, which is expressed at low levels and is downregulated following the second postnatal week. However, it appears that few cells, presumably interneurons, continue to express GluN2D also in juvenile mice.
View Article and Find Full Text PDFDrug-evoked synaptic plasticity in the mesolimbic system reshapes circuit function and drives drug-adaptive behavior. Much research has focused on excitatory transmission in the ventral tegmental area (VTA) and the nucleus accumbens (NAc). How drug-evoked synaptic plasticity of inhibitory transmission affects circuit adaptations remains unknown.
View Article and Find Full Text PDFThe basolateral amygdala (BLA) assigns emotional significance to sensory stimuli. This association results in a change in the output (action potentials) of BLA projection neurons in response to the stimulus. Neuronal output is controlled by the intrinsic excitability of the neuron.
View Article and Find Full Text PDFBackground: Addictive drugs have in common that they cause surges in dopamine (DA) concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA). Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs) at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine) cause similar changes through their effects on the mesolimbic DA system.
View Article and Find Full Text PDF