Unlabelled: The American Academy of Pediatrics recommends premedication for all nonemergent neonatal intubations, yet there remains significant variation in this practice nationally. We aimed to standardize our unit's premedication practices for improved intubation success and reduced adverse events.
Methods: The study workgroup developed educational material and protocol content.
Background: Cyanogen is a toxic flammable gas used as a fumigant in numerous industries. Occupational exposure to cyanogen can occur during its production and use. The most serious human health risk from exposure to cyanogen is via the respiratory system.
View Article and Find Full Text PDFPermeation of oxides of nitrogen and sulfur gases through skin and the consequences of dermal exposure are still poorly understood. We measured the penetration profile of three common industrial gases through skin, for short-term exposures relevant to HAZMAT scenarios. Time variations of gas concentration, clothing effects, temperature and humidity on epidermal absorption and penetration were assessed.
View Article and Find Full Text PDFThe toxic release of aldehyde vapours during a hazardous material (HAZMAT) incident primarily results in respiratory concerns for the unprotected public. However, skin absorption may be an important concurrent exposure route that is poorly understood for this scenario. This study provides experimental data on the skin absorption properties of common aldehydes used in industry, including acetaldehyde, acrolein, benzaldehyde and formaldehyde, in gaseous or vapour form using an adapted in vitro technique.
View Article and Find Full Text PDFThis article presents the first empirical experimental data on the skin absorption of methyl chloride gas using an in vitro technique and human skin. Methyl chloride is a commonly used industrial agent that is known to be an inhalational hazard but is also reported to be absorbed through human skin in amounts that contribute substantially to systemic intoxication. As a result, is has been assigned a skin notation by the ACGIH.
View Article and Find Full Text PDFEthylene oxide (EO) is a reactive gas used by numerous industries and medical facilities as a sterilant, a fumigant, and as a chemical intermediate in chemical manufacturing. Due to its common use, EO has been involved in a number of leaks and explosive incidents/accidents requiring HAZMAT response. However, the extent of skin absorption under short-term HAZMAT conditions has not been directly assessed.
View Article and Find Full Text PDFAccidental or intentional releases of toxic gases or vapors are the most common occurrence in hazardous material (HAZMAT) incidents that result in human injuries. The most serious hazard from exposure to gases or vapors is via the respiratory system. Dermal uptake, as a secondary route, is still a concern, most acutely for the unprotected public.
View Article and Find Full Text PDFAccidental or intentional releases of toxic gases can have significant public health consequences and emergency resource demands. Management of exposed individuals during hazardous material incidents should be risk and evidence based, but there are knowledge gaps in relation to dermal absorption of gases and management advice for potentially exposed individuals. Using a modified Organization for Economic Co-operation and Development (OECD) in vitro toxicology protocol with human donor skin, this article reports on two common and odorous chemicals, hydrogen sulphide and phosphine.
View Article and Find Full Text PDFThis technical note provides details of an experimental technique for in-vitro skin studies with atmospheric chemical challenge. There appear to be major evidence gaps in relation to dermal exposure of gases. We describe a modification of standard OECD protocols for an atmospheric delivery system which can be used to understand interaction of toxic gases and the skin.
View Article and Find Full Text PDFAccidental or intentional toxic gas releases may result in significant public health and psychological consequences. Management of exposed individuals during HAZMAT incidents should be risk-based and supported by a suitable scientific evidence base. There appear to be large evidence gaps in relation to dermal absorption of gases, as well as management advice for potentially exposed individuals.
View Article and Find Full Text PDFIn an atmospheric HAZMAT release unprotected public dermal exposure is often of short duration, but with potential secondary exposure if not decontaminated promptly. Mass decontamination is resource intensive and needs to be justified. For many HAZMAT agents there is no evidence-base on which to provide guidance on decontamination, particularly for non-symptomatic worried well.
View Article and Find Full Text PDFForty-one normal horses were evaluated for reactivity to intradermally injected aqueous allergens to determine allergen threshold concentrations (TC), with potential relevance to equine intradermal testing (IDT). Horses were tested three times over 1 year to assess seasonal variation in reactivity, using three to five serial dilutions of 27 allergens each time. Injection sites were evaluated after 15 min, 1 h, 4 h and 24 h.
View Article and Find Full Text PDF