Subinhibitory levels of antibiotics can promote the development of antibiotic resistance in bacteria. However, it is unclear whether antibiotic concentrations released into aquatic systems exert adequate pressure to select populations with resistance traits. To examine this issue, 15 mesocosms containing pristine surface water were treated with oxytetracycline (OTC) for 56 days at five levels (0, 5, 20, 50, and 250 microg L(-1)), and six tetracycline-resistance genes (tet(B), tet(L), tet(M), ted(O), tet(Q), and tet(W)), the sum of those genes (tet(R)), "total" 16S-rRNA genes, and transposons (Tn916 and Tn 1545) were monitored using real-time PCR.
View Article and Find Full Text PDFAntibiotic resistance genes (ARGs) are emerging contaminants that are being found at elevated levels in sediments and other aquatic compartments in areas of intensive agricultural and urban activity. However, little quantitative data exist on the migration and attenuation of ARGs in natural ecosystems, which is central to predicting their fate after release into receiving waters. Here we examined the fate of tetracycline-resistance genes in bacterial hosts released in cattle feedlot wastewater using field-scale mesocosms to quantify ARG attenuation rate in the water column and also the migration of ARGs into peripheral biofilms.
View Article and Find Full Text PDFFEMS Microbiol Lett
October 2006
The disappearance of selected tetracycline resistance genes was investigated in different simulated receiving waters to determine conditions that maximize resistance gene loss after release. Wastewater from an operating cattle feedlot lagoon was provided to four pairs of duplicate 3-L flasks, and tet(O), tet(W), tet(M), tet(Q), and 16S rRNA gene levels were monitored over 29 days using real-time PCR. Treatments included simulated sunlight with 0, 25, and 250 microg L(-1) nominal oxytetracycline (OTC) levels, respectively, and 'dark' conditions.
View Article and Find Full Text PDF