Peripheral glia are important regulators of diverse physiologic functions yet their molecular distinctions and locations in almost all visceral organs are not well-understood. We performed a systematic analysis of peripheral glia, focusing on the lung and leveraging single cell RNA sequencing (scRNA-seq) analysis to characterize their cellular and molecular features. Using in vivo lineage studies, we characterized the anatomic, cellular, and molecular features of the Sox10+ glial lineage of the mouse lung.
View Article and Find Full Text PDFBackground: After introducing IL-1/IL-6 inhibitors, some patients with Still and Still-like disease developed unusual, often fatal, pulmonary disease. This complication was associated with scoring as DReSS (drug reaction with eosinophilia and systemic symptoms) implicating these inhibitors, although DReSS can be difficult to recognize in the setting of systemic inflammatory disease.
Objective: To facilitate recognition of IL-1/IL-6 inhibitor-DReSS in systemic inflammatory illnesses (Still/Still-like) by looking at timing and reaction-associated features.
Early stages of deadly respiratory diseases including COVID-19 are challenging to elucidate in humans. Here, we define cellular tropism and transcriptomic effects of SARS-CoV-2 virus by productively infecting healthy human lung tissue and using scRNA-seq to reconstruct the transcriptional program in "infection pseudotime" for individual lung cell types. SARS-CoV-2 predominantly infected activated interstitial macrophages (IMs), which can accumulate thousands of viral RNA molecules, taking over 60% of the cell transcriptome and forming dense viral RNA bodies while inducing host profibrotic (TGFB1, SPP1) and inflammatory (early interferon response, CCL2/7/8/13, CXCL10, and IL6/10) programs and destroying host cell architecture.
View Article and Find Full Text PDFHormones mediate long-range cell communication and play vital roles in physiology, metabolism, and health. Traditionally, endocrinologists have focused on one hormone or organ system at a time. Yet, hormone signaling by its very nature connects cells of different organs and involves crosstalk of different hormones.
View Article and Find Full Text PDFPulmonary neuroendocrine cells (PNECs) are sensory epithelial cells that transmit airway status to the brain via sensory neurons and locally via calcitonin gene-related peptide (CGRP) and γ- aminobutyric acid (GABA). Several other neuropeptides and neurotransmitters have been detected in various species, but the number, targets, functions, and conservation of PNEC signals are largely unknown. We used scRNAseq to profile hundreds of the rare mouse and human PNECs.
View Article and Find Full Text PDFMolecular characterization of cell types using single-cell transcriptome sequencing is revolutionizing cell biology and enabling new insights into the physiology of human organs. We created a human reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the same donor. This atlas enabled molecular characterization of more than 400 cell types, their distribution across tissues, and tissue-specific variation in gene expression.
View Article and Find Full Text PDFDyskeratosis congenita is a disease of impaired tissue maintenance downstream of telomere dysfunction. Characteristically, patients present with the clinical triad of nail dystrophy, oral leukoplakia, and skin pigmentation defects, but the disease involves degenerative changes in multiple organs. Mutations in telomere-binding proteins such as TINF2 (TRF1-interacting nuclear factor 2) or in telomerase, the enzyme that counteracts age related telomere shortening, are causative in dyskeratosis congenita.
View Article and Find Full Text PDFSmall cell lung cancer (SCLC) is classified as a high-grade neuroendocrine (NE) tumor, but a subset of SCLC has been termed "variant" due to the loss of NE characteristics. In this study, we computed NE scores for patient-derived SCLC cell lines and xenografts, as well as human tumors. We aligned NE properties with transcription factor-defined molecular subtypes.
View Article and Find Full Text PDFAngiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology.
View Article and Find Full Text PDFAlthough single-cell RNA sequencing studies have begun to provide compendia of cell expression profiles, it has been difficult to systematically identify and localize all molecular cell types in individual organs to create a full molecular cell atlas. Here, using droplet- and plate-based single-cell RNA sequencing of approximately 75,000 human cells across all lung tissue compartments and circulating blood, combined with a multi-pronged cell annotation approach, we create an extensive cell atlas of the human lung. We define the gene expression profiles and anatomical locations of 58 cell populations in the human lung, including 41 out of 45 previously known cell types and 14 previously unknown ones.
View Article and Find Full Text PDFMetastasis is the main cause of death in cancer patients but remains a poorly understood process. Small cell lung cancer (SCLC) is one of the most lethal and most metastatic cancer types. SCLC cells normally express neuroendocrine and neuronal gene programs but accumulating evidence indicates that these cancer cells become relatively more neuronal and less neuroendocrine as they gain the ability to metastasize.
View Article and Find Full Text PDFPulmonary neuroendocrine (NE) cells are neurosensory cells sparsely distributed throughout the bronchial epithelium, many in innervated clusters of 20-30 cells. Following lung injury, NE cells proliferate and generate other cell types to promote epithelial repair. Here, we show that only rare NE cells, typically 2-4 per cluster, function as stem cells.
View Article and Find Full Text PDFEpithelial cells are normally stably anchored, maintaining their relative positions and association with the basement membrane. Developmental rearrangements occur through cell intercalation, and cells can delaminate during epithelial-mesenchymal transitions and metastasis. We mapped the formation of lung neuroepithelial bodies (NEBs), innervated clusters of neuroendocrine/neurosensory cells within the bronchial epithelium, revealing a targeted mode of cell migration that we named "slithering," in which cells transiently lose epithelial character but remain associated with the membrane while traversing neighboring epithelial cells to reach cluster sites.
View Article and Find Full Text PDFPurpose Of Review: Childhood interstitial lung diseases (ILDs) are a diverse class of disorders affecting the alveolar gas exchange region that lack specific treatments and are usually fatal. Here, we integrate recent insights into alveolar cell biology with histopathology from well characterized mutations of surfactant-associated genes. We take a reductionist approach by parsing discrete histological features and correlating each to perturbation of a particular function of the alveolar epithelial type II (AT2) cell, the central driver of disease, to generate a working model for the cellular mechanisms of disease pathogenesis.
View Article and Find Full Text PDFPurpose Of Review: There has been tremendous progress in the approach to childhood interstitial lung diseases (chILD), with particular recognition that interstitial lung disease (ILD) in infants is often distinct from the forms that occur in older children and adults. Diagnosis is challenging because of the rarity of ILD and the fact that the presenting symptoms of ILD often overlap those of common respiratory disorders. This review summarizes the newly published recommendations for diagnosis and management, and highlights the recent scientific advances in several specific forms of chILD.
View Article and Find Full Text PDF