In many applications such as diagnostics and therapy development, small peptide fragments consisting of only a few amino acids are often attractive alternatives to bulky proteins. This is due to factors such as the ease of scalable chemical synthesis and numerous methods for their discovery. One drawback of using peptides is that their activity can often be negatively impacted by the lack of a rigid, 3D stabilizing structure provided by the rest of the protein.
View Article and Find Full Text PDFBinding interactions of the spike proteins of the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) to a peptide fragment derived from the human angiotensin converting enzyme 2 (hACE2) receptor are investigated. The peptide is employed as capture moiety in enzyme linked immunosorbent assays (ELISA) and quantitative binding interaction measurements that are based on fluorescence proximity sensing (switchSENSE). In both techniques, the peptide is presented on an oligovalent DNA nanostructure, in order to assess the impact of mono- versus trivalent binding modes.
View Article and Find Full Text PDFAlthough DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg -containing buffer at moderate temperatures. Here, means for efficient cryopreservation of 2D and 3D DNA origami nanostructures and, in particular, the effect of repeated freezing and thawing cycles are investigated. It is found that, while the 2D DNA origami nanostructures maintain their structural integrity over at least 32 freeze-thaw cycles, ice crystal formation makes the DNA origami gradually more sensitive toward harsh sample treatment conditions.
View Article and Find Full Text PDFZe 339, a CO extract prepared from the leaves of Petasites hybridus, possesses antispasmodic and anti-inflammatory effects and is proven to be effective in the treatment of allergic rhinitis. To study possible hepatotoxic effects of Ze 339, its main constituents and metabolites, a series of in vitro investigations were performed. Furthermore, different reconstituted fractions of extract (petasins and fatty acid fraction) were examined in three in vitro test systems using hepatocytes: Two human cell lines, with lower and higher activity of cytochrome P450 enzymes (HepG2, HepaRG) as well as a rodent cell line with high cytochrome P450 activity (H-4-II-E), were used.
View Article and Find Full Text PDFDNA origami nanostructures are widely employed in various areas of fundamental and applied research. Due to the tremendous success of the DNA origami technique in the academic field, considerable efforts currently aim at the translation of this technology from a laboratory setting to real-world applications, such as nanoelectronics, drug delivery, and biosensing. While many of these real-world applications rely on an intact DNA origami shape, they often also subject the DNA origami nanostructures to rather harsh and potentially damaging environmental and processing conditions.
View Article and Find Full Text PDFDNA nanostructures enable the attachment of functional molecules to nearly any unique location on their underlying structure. Due to their single-base-pair structural resolution, several ligands can be spatially arranged and closely controlled according to the geometry of their desired target, resulting in optimized binding and/or signaling interactions. Here, the efficacy of SWL, an ephrin-mimicking peptide that binds specifically to EphrinA2 (EphA2) receptors, increased by presenting up to three of these peptides on small DNA nanostructures in an oligovalent manner.
View Article and Find Full Text PDFMechanical properties of complex, polymer-based soft matter, such as cells or biopolymer networks, can be understood in neither the classical frame of flexible polymers nor of rigid rods. Underlying filaments remain outstretched due to their non-vanishing backbone stiffness, which is quantified via the persistence length (lp), but they are also subject to strong thermal fluctuations. Their finite bending stiffness leads to unique, non-trivial collective mechanics of bulk networks, enabling the formation of stable scaffolds at low volume fractions while providing large mesh sizes.
View Article and Find Full Text PDF