Publications by authors named "Christien M Beez"

Objectives: Despite the success of coronary artery bypass graft (CABG) surgery using autologous saphenous vein grafts (SVGs), nearly 50% of patients experience vein graft disease within 10 years of surgery. One contributing factor to early vein graft disease is endothelial damage during short-term storage of SVGs in inappropriate solutions. Our aim was to evaluate the effects of a novel endothelial damage inhibitor (EDI) on SVGs from patients undergoing elective CABG surgery and on venous endothelial cells (VECs) derived from these SVGs.

View Article and Find Full Text PDF

Individuals with transient reception potential cation channel 6 (TRPC6) mutation have variable phenotypes, ranging from healthy carriers to focal segmental glomerulosclerosis (FSGS). Human induced pluripotent stem cell (hiPSC) line was generated from the urinary cells of a patient with FSGS with a mutant variant of TRPC6. The cells were reprogrammed with Yamanaka factors (OCT3, SOX2, LIN28, L-MYC, and KLF4) using a commercially available Epi5 Reprogramming Kit.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder of adults, characterized by uncontrolled cysts formation that causes a gradual impairment of kidney function. We generated a human induced pluripotent stem cell (hiPSC) line from the urinary cells of a patient diagnosed with ADPKD using a non-integrating Epi5™ Episomal iPSC reprogramming strategy. Characterization of the cell line was performed regarding their undifferentiated status, differentiation potential, and quality control for karyotypic integrity, identity, and clearance of reprogramming vectors.

View Article and Find Full Text PDF

The cardioprotective properties of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) are currently being investigated in preclinical studies. Although microRNAs (miRNAs) encapsulated in EVs have been identified as one component responsible for the cardioprotective effect of MSCs, their potential off-target effects have not been sufficiently characterized. In the present study, we aimed to investigate the miRNA profile of EVs isolated from MSCs that were derived from cord blood (CB) and adipose tissue (AT).

View Article and Find Full Text PDF

Cells release extracellular vesicles (EVs) to communicate in a paracrine manner with other cells, and thereby influence processes, such as angiogenesis. The conditioned medium of human cardiac-derived adherent proliferating (CardAP) cells was recently shown to enhance angiogenesis. To elucidate whether their released EVs are involved, we isolated them by differential centrifugation from the conditioned medium derived either in the presence or absence of a pro-inflammatory cytokine cocktail.

View Article and Find Full Text PDF

Background: Nano-sized vesicles, so called extracellular vesicles (EVs), from regenerative cardiac cells represent a promising new therapeutic approach to treat cardiovascular diseases. However, it is not yet sufficiently understood how cardiac-derived EVs facilitate their protective effects. Therefore, we investigated the immune modulating capabilities of EVs from human cardiac-derived adherent proliferating (CardAP) cells, which are a unique cell type with proven cardioprotective features.

View Article and Find Full Text PDF

In the past 20 years, a variety of cell products has been evaluated in terms of their capacity to treat patients with acute myocardial infarction and chronic heart failure. Despite initial enthusiasm, therapeutic efficacy has overall been disappointing, and clinical application is costly and complex. Recently, a subset of small extracellular vesicles (EVs), commonly referred to as "exosomes," was shown to confer cardioprotective and regenerative signals at a magnitude similar to that of their donor cells.

View Article and Find Full Text PDF