Background: The active transport of molecules into the brain from blood is regulated by receptors, transporters, and other cell surface proteins that are present on the luminal surface of endothelial cells at the blood-brain barrier (BBB). However, proteomic profiling of proteins present on the luminal endothelial cell surface of the BBB has proven challenging due to difficulty in labelling these proteins in a way that allows efficient purification of these relatively low abundance cell surface proteins.
Methods: Here we describe a novel perfusion-based labelling workflow: in vivo glycocapture.
Cerebrovascular pathology that involves altered protein levels (or signaling) of the transforming growth factor beta (TGFβ) family has been associated with various forms of age-related dementias, including Alzheimer disease (AD) and vascular cognitive impairment and dementia (VCID). Transgenic mice overexpressing TGFβ1 in the brain (TGF mice) recapitulate VCID-associated cerebrovascular pathology and develop cognitive deficits in old age or when submitted to comorbid cardiovascular risk factors for dementia. We characterized the cerebrovascular proteome of TGF mice using mass spectrometry (MS)-based quantitative proteomics.
View Article and Find Full Text PDFBackground: ATP-binding cassette (ABC) transporters comprise a superfamily of genes encoding membrane proteins with nucleotide-binding domains (NBD). These transporters, including drug efflux across the blood-brain barrier (BBB), carry a variety of substrates through plasma membranes against substrate gradients, fueled by hydrolyzing ATP. The expression patterns/enrichment of transporter genes in brain microvessels compared to peripheral vessels and tissues are largely uncharacterized.
View Article and Find Full Text PDFBlood brain barrier (BBB) models in vitro are an important tool to aid in the pre-clinical evaluation and selection of BBB-crossing therapeutics. Stem cell derived BBB models have recently demonstrated a substantial advantage over primary and immortalized brain endothelial cells (BECs) for BBB modeling. Coupled with recent discoveries highlighting significant species differences in the expression and function of key BBB transporters, the field is in need of robust, species-specific BBB models for improved translational predictability.
View Article and Find Full Text PDFThe ability of drugs and therapeutic antibodies to reach central nervous system (CNS) targets is greatly diminished by the blood-brain barrier (BBB). Receptor-mediated transcytosis (RMT), which is responsible for the transport of natural protein ligands across the BBB, was identified as a way to increase drug delivery to the brain. In this study, we characterized IGF1R5, which is a single-domain antibody (sdAb) that binds to insulin-like growth factor-1 receptor (IGF1R) at the BBB, as a ligand that triggers RMT and could deliver cargo molecules that otherwise do not cross the BBB.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) prevents the majority of drugs from crossing into the brain and reaching neurons. To overcome this challenge, safe and non-invasive technologies targeting receptor-mediated pathways have been developed. In this study, three single-domain antibodies (sdAbs; IGF1R3, IGF1R4, and IGF1R5) targeting the extracellular domain of the human insulin-like growth factor-1 receptor (IGF1R), generated by llama immunization, showed enhanced transmigration across the rat BBB model (SV-ARBEC) in vitro.
View Article and Find Full Text PDFReceptor-mediated transcytosis (RMT) is a principal pathway for transport of macromolecules essential for brain function across the blood-brain barrier (BBB). Antibodies or peptide ligands which bind RMT receptors are often co-opted for brain delivery of biotherapeutics. Constitutively recycling transferrin receptor (TfR) is a prototype receptor utilized to shuttle therapeutic cargos across the BBB.
View Article and Find Full Text PDFAntibody-based therapeutics have emerged as novel class of biopharmaceuticals over the last couple of decades with the advancements made in production and downstream processing technologies. The structural diversity of therapeutic antibodies has also evolved with the development of bispecific (and multispecific) antibodies and antibody-drug conjugates. With increased structural complexities and multi-modularity, there is a need to demonstrate that the entire structure is stable in vivo and arriving at its target site in an intact form.
View Article and Find Full Text PDFUnlabelled: The blood-brain barrier (BBB) is a formidable obstacle to the delivery of therapeutics to the brain. Antibodies that bind transferrin receptor (TfR), which is enriched in brain endothelial cells, have been shown to cross the BBB and are being developed as fusion proteins to deliver therapeutic cargos to brain targets. Various antibodies have been developed for this purpose and their in vivo evaluation demonstrated that either low affinity or monovalent receptor binding re-directs their transcellular trafficking away from lysosomal degradation and toward improved exocytosis on the abluminal side of the BBB.
View Article and Find Full Text PDFCurrent methods for examining antibody trafficking are either non-quantitative such as immunocytochemistry or require antibody labeling with tracers. We have developed a multiplexed quantitative method for antibody 'tracking' in endosomal compartments of brain endothelial cells. Rat brain endothelial cells were co-incubated with blood-brain barrier (BBB)-crossing FC5, monovalent FC5Fc or bivalent FC5Fc fusion antibodies and control antibodies.
View Article and Find Full Text PDFBackground: In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes) and ectosomes (originating from direct budding/shedding of plasma membranes). Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules.
View Article and Find Full Text PDFFC5 and FC44 are single-domain antibodies (VHHs), selected by functional panning of phage-display llama VHH library for their ability to internalize human brain endothelial cells (BEC) and to transmigrate the in vitro BBB model. Quantification of brain delivery of FC5 and FC44 in vivo was challenging using classical methods because of their short plasma half-life and their loss of functionality with radioactive labeling. A highly sensitive (detection limit <2 ng/mL) and specific SRM-ILIS method to detect and quantify unlabeled VHHs in multiplexed assays was developed and applied to comparatively evaluate brain delivery of FC5 and FC44, and two control VHHs, EG2 and A20.
View Article and Find Full Text PDFOne of the cornerstones of therapy for invasive breast cancer includes the use of anthracyclines. Epirubicin, a stereoisomer of doxorubicin, is one of the commonly used anthracyclines. Anthracyclines while effective therapy for breast cancer, have their own unique toxicities, such as cardiomyopathy.
View Article and Find Full Text PDFWe investigated the ability of extracellular matrix (ECM) proteins to modulate the response of endothelial cells to both promoters and inhibitors of angiogenesis. Using human dermal microvascular endothelial cells (HDMEC), we found that cells demonstrated different adhesive properties and proliferative responses to the growth factor VEGF depending upon which ECM protein with which they were in contact, with fibronectin having the most impact on VEGF-induced HDMEC proliferation and survival. More importantly, we observed that ECM could modulate the ability of the angiogenic inhibitor endostatin to prevent endothelial cell proliferation, survival and migration.
View Article and Find Full Text PDFBackground: The microenvironment surrounding cells can exert multiple effects on their biological responses. In particular the extracellular matrix surrounding cells can profoundly influence their behavior. It has been shown that the extracellular matrix composition in tumors is vastly different than that found in normal tissue with increased amounts of certain matrices such as collagen I.
View Article and Find Full Text PDF