Genomic medicine is based on the knowledge that virtually every medical condition, disease susceptibility or response to treatment is caused, regulated or influenced by genes. Genetic testing may therefore add value across the disease spectrum, ranging from single-gene disorders with a Mendelian inheritance pattern to complex multi-factorial diseases. The critical factors for genomic risk prediction are to determine: (1) where the genomic footprint of a particular susceptibility or dysfunction resides within this continuum, and (2) to what extent the genetic determinants are modified by environmental exposures.
View Article and Find Full Text PDFAlthough the major part of the burden of disease for female breast cancer occurs at older age, less is known about the development and progression in this age group than in women under 60 years of age. As the world population continues to age, the percentage of elderly is increasing in all communities and the incidence of breast cancer will rise accordingly. Improving detection and diagnosis, and a better understanding of the mechanisms that play a role in this age group, will not only improve quality of life in older sufferers but could also contribute to the management of this disease in the adult population as well.
View Article and Find Full Text PDFApproximately 25% of clinically important drugs and numerous environmental carcinogens are metabolised by CYP2D6. Variation in the CYP2D6 gene and concomitant use of tamoxifen (TAM) with certain antidepressants may increase recurrence risk in breast cancer patients due to reduced enzyme activity. In this study we determined the appropriateness of adding CYP2D6 genotyping to the breast cancer genetic testing options already available in South Africa, which include BRCA mutation screening and transcriptional profiling to assess estrogen receptor (ER) status.
View Article and Find Full Text PDF