Publications by authors named "Christiane Simon"

The adult mouse subependymal zone (SEZ) harbours adult neural stem cells (aNSCs) that give rise to neuronal and oligodendroglial progeny. However it is not known whether the same aNSC can give rise to neuronal and oligodendroglial progeny or whether these distinct progenies constitute entirely separate lineages. Continuous live imaging and single-cell tracking of aNSCs and their progeny isolated from the mouse SEZ revealed that aNSCs exclusively generate oligodendroglia or neurons, but never both within a single lineage.

View Article and Find Full Text PDF

SOX10 is a well-conserved and widely expressed transcription factor involved in the regulation of embryonic development and in the determination of cell fate. As it is expressed in neural crest cells, their derivatives and the oligodendrocyte lineage, mutations of the protein contribute to a variety of diseases like neurocristopathies, peripheral demyelinating neuropathies, and melanoma. Here, we report the generation of an inducible Sox10-iCreER(T2) BAC transgenic mouse line that labels, depending on the timepoint of induction, distinct derivatives of the otic placode and the neural crest as well as cells of the oligodendrocyte lineage.

View Article and Find Full Text PDF

The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise.

View Article and Find Full Text PDF

Despite their abundance, still little is known about the rather frequent, constantly proliferating progenitors spread throughout the adult mouse brain parenchyma. The majority of these progenitors express the basic-helix-loop-helix transcription factor Olig2, and their number further increases after injury. Here, we examine the progeny of this progenitor population by genetic fate mapping using tamoxifen-inducible Cre-recombination in the Olig2 locus to turn on permanent reporter gene expression in the adult brain.

View Article and Find Full Text PDF