Publications by authors named "Christiane Rothkegel"

Background: Blinded independent central review (BICR) of radiographic images is frequently conducted in oncology trials to address the potential bias of local evaluation (LE) of endpoints such as progression-free survival (PFS) and objective response rate (ORR). Given that BICR is a complex and costly process, we evaluated the agreement between LE- and BICR-based treatment effect results and the impact of BICR on regulatory decision-making.

Materials And Methods: Meta-analyses were performed using hazard ratios (HRs) for PFS and odds ratios (ORs) for ORR from all randomized Roche-supported oncology clinical trials during 2006-2020 that had both LE and BICR results (49 studies with a total of over 32 000 patients).

View Article and Find Full Text PDF

The ubiquitously expressed nitric oxide (NO) receptor soluble guanylate cyclase (sGC) plays a key role in signal transduction. Binding of NO to the N-terminal prosthetic heme moiety of sGC results in approximately 200-fold activation of the enzyme and an increased conversion of GTP into the second messenger cGMP. sGC exists as a heterodimer the dimerization of which is mediated mainly by the central region of the enzyme.

View Article and Find Full Text PDF

ROS are a risk factor of several cardiovascular disorders and interfere with NO/soluble guanylyl cyclase/cyclic GMP (NO/sGC/cGMP) signaling through scavenging of NO and formation of the strong oxidant peroxynitrite. Increased oxidative stress affects the heme-containing NO receptor sGC by both decreasing its expression levels and impairing NO-induced activation, making vasodilator therapy with NO donors less effective. Here we show in vivo that oxidative stress and related vascular disease states, including human diabetes mellitus, led to an sGC that was indistinguishable from the in vitro oxidized/heme-free enzyme.

View Article and Find Full Text PDF

The ubiquitous heterodimeric nitric oxide (NO) receptor soluble guanylate cyclase (sGC) plays a key role in various signal transduction pathways. Binding of NO takes place at the prosthetic heme moiety at the N-terminus of the beta(1)-subunit of sGC. The induced structural changes lead to an activation of the catalytic C-terminal domain of the enzyme and to an increased conversion of GTP into the second messenger cyclic GMP (cGMP).

View Article and Find Full Text PDF

1. Chronic renal disease is associated with oxidative stress, reduced nitric oxide (NO) availability and soluble guanylate cyclase (sGC) dysfunction. Recently, we discovered BAY 58-2667, a compound activating heme-deficient or oxidized sGC in a NO-independent manner.

View Article and Find Full Text PDF

Soluble guanylate cyclase, a heterodimer consisting of an alpha- and a heme-containing beta-subunit, is the major receptor for the biological messenger nitric oxide (NO) and is involved in various signal transduction pathways. The heme moiety of the enzyme is bound between the axial heme ligand histidine(105) and the recently identified counterparts of the heme propionic acids, tyrosine(135) and arginine(139). The latter residues together with an invariant serine(137) form the unique heme binding motif Y-x-S-x-R.

View Article and Find Full Text PDF