Experiments comparing diploids with polyploids and in single grassland sites show that nitrogen and/or phosphorus availability influences plant growth and community composition dependent on genome size; specifically, plants with larger genomes grow faster under nutrient enrichments relative to those with smaller genomes. However, it is unknown if these effects are specific to particular site localities with speciifc plant assemblages, climates, and historical contingencies. To determine the generality of genome size-dependent growth responses to nitrogen and phosphorus fertilization, we combined genome size and species abundance data from 27 coordinated grassland nutrient addition experiments in the Nutrient Network that occur in the Northern Hemisphere across a range of climates and grassland communities.
View Article and Find Full Text PDFClimate and land-use change are key drivers of global change. Full-factorial field experiments in which both drivers are manipulated are essential to understand and predict their potentially interactive effects on the structure and functioning of grassland ecosystems. Here, we present 8 years of data on grassland dynamics from the Global Change Experimental Facility in Central Germany.
View Article and Find Full Text PDFAgricultural grasslands play an important role in conserving the biodiversity of the European cultural landscape. Both, litter cover and soil nutrient availability, change with grassland management, but it is not well-studied how seedling recruitment and growth of multiple grassland species are influenced by their single or combined effects. Therefore, we studied the effects of nitrogen fertilization (100 kg N per year and ha) and litter cover (250 g per m) on seedling recruitment and growth of 75 temperate grassland species (16 graminoid species, 51 forb species, 8 legume species) in a full factorial microcosm experiment.
View Article and Find Full Text PDFPlant species respond to varying plant species diversity and associated changes in their abiotic and biotic environment with changes in their phenotype. However, it is not clear to what degree this phenotypic differentiation is due to genotype diversity within populations or phenotypic plasticity of plant individuals. We studied individuals of 16 populations of the clonal herb grown in plant communities of different species richness in a 17-year-old grassland biodiversity experiment (Jena Experiment).
View Article and Find Full Text PDFIt is well known that biodiversity positively affects ecosystem functioning, leading to enhanced ecosystem stability. However, this knowledge is mainly based on analyses using single ecosystem functions, while studies focusing on the stability of ecosystem multifunctionality (EMF) are rare. Taking advantage of a long-term grassland biodiversity experiment, we studied the effect of plant diversity (1-60 species) on EMF over 5 years, its temporal stability, as well as multifunctional resistance and resilience to a 2-year drought event.
View Article and Find Full Text PDFLittle is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients.
View Article and Find Full Text PDFEutrophication usually impacts grassland biodiversity, community composition, and biomass production, but its impact on the stability of these community aspects is unclear. One challenge is that stability has many facets that can be tightly correlated (low dimensionality) or highly disparate (high dimensionality). Using standardized experiments in 55 grassland sites from a globally distributed experiment (NutNet), we quantify the effects of nutrient addition on five facets of stability (temporal invariability, resistance during dry and wet growing seasons, recovery after dry and wet growing seasons), measured on three community aspects (aboveground biomass, community composition, and species richness).
View Article and Find Full Text PDFPositive plant diversity-productivity relationships are known to be driven by complementary resource use via differences in plant functional traits. Moreover, soil properties related to nutrient availability were shown to change with plant diversity over time; however, it is not well-understood whether and how such plant diversity-dependent soil changes and associated changes in functional traits contribute to positive diversity-productivity relationships in the long run. To test this, we investigated plant communities of different species richness (1, 2, 6, and 9 species) in a 15-year-old grassland biodiversity experiment.
View Article and Find Full Text PDFGlobal change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance.
View Article and Find Full Text PDFLong-term analyses of biodiversity data highlight a 'biodiversity conservation paradox': biological communities show substantial species turnover over the past century, but changes in species richness are marginal. Most studies, however, have focused only on the incidence of species, and have not considered changes in local abundance. Here we asked whether analysing changes in the cover of plant species could reveal previously unrecognized patterns of biodiversity change and provide insights into the underlying mechanisms.
View Article and Find Full Text PDFVegetation-plot resurvey data are a main source of information on terrestrial biodiversity change, with records reaching back more than one century. Although more and more data from re-sampled plots have been published, there is not yet a comprehensive open-access dataset available for analysis. Here, we compiled and harmonised vegetation-plot resurvey data from Germany covering almost 100 years.
View Article and Find Full Text PDFGlobal change has dramatic impacts on grassland diversity. However, little is known about how fast species can adapt to diversity loss and how this affects their responses to global change. Here, we performed a common garden experiment testing whether plant responses to global change are influenced by their selection history and the conditioning history of soil at different plant diversity levels.
View Article and Find Full Text PDFFertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass.
View Article and Find Full Text PDFExperiments showed that biodiversity increases grassland productivity and nutrient exploitation, potentially reducing fertiliser needs. Enhancing biodiversity could improve P-use efficiency of grasslands, which is beneficial given that rock-derived P fertilisers are expected to become scarce in the future. Here, we show in a biodiversity experiment that more diverse plant communities were able to exploit P resources more completely than less diverse ones.
View Article and Find Full Text PDFThe effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cA , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.
View Article and Find Full Text PDFLong-term biodiversity experiments have shown increasing strengths of biodiversity effects on plant productivity over time. However, little is known about rapid evolutionary processes in response to plant community diversity, which could contribute to explaining the strengthening positive relationship. To address this issue, we performed a transplant experiment with offspring of seeds collected from four grass species in a 14-year-old biodiversity experiment (Jena Experiment).
View Article and Find Full Text PDFDiversity loss has been shown to change the soil community; however, little is known about long-term consequences and underlying mechanisms. Here, we investigated how nematode communities are affected by plant species richness and whether this is driven by resource quantity or quality in 15-year-old plant communities of a long-term grassland biodiversity experiment. We extracted nematodes from 93 experimental plots differing in plant species richness, and measured above- and belowground plant biomass production and soil organic carbon concentrations (C) as proxies for resource quantity, as well as C/N ratio and specific root length (SRL) as proxies for resource quality.
View Article and Find Full Text PDF