Publications by authors named "Christiane Roscher"

Experiments comparing diploids with polyploids and in single grassland sites show that nitrogen and/or phosphorus availability influences plant growth and community composition dependent on genome size; specifically, plants with larger genomes grow faster under nutrient enrichments relative to those with smaller genomes. However, it is unknown if these effects are specific to particular site localities with speciifc plant assemblages, climates, and historical contingencies. To determine the generality of genome size-dependent growth responses to nitrogen and phosphorus fertilization, we combined genome size and species abundance data from 27 coordinated grassland nutrient addition experiments in the Nutrient Network that occur in the Northern Hemisphere across a range of climates and grassland communities.

View Article and Find Full Text PDF
Article Synopsis
  • Drought events are becoming more common in grasslands and shrublands, affecting soil organic carbon (SOC), which includes different forms like particulate (POC) and mineral-associated organic carbon (MAOC).
  • A global study over 19 sites revealed that in wetter areas (aridity index > 0.65), extreme drought led to a significant decrease in SOC (7.9%) and POC (15.9%), but MAOC levels remained unchanged.
  • In drier regions (aridity index < 0.65), drought did not significantly affect any type of soil organic carbon, indicating that the impact of drought on SOC is influenced by environmental aridity and rainfall variability.
View Article and Find Full Text PDF

Climate and land-use change are key drivers of global change. Full-factorial field experiments in which both drivers are manipulated are essential to understand and predict their potentially interactive effects on the structure and functioning of grassland ecosystems. Here, we present 8 years of data on grassland dynamics from the Global Change Experimental Facility in Central Germany.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding how plant communities react to global changes is essential for predicting future ecosystem dynamics.
  • The CoRRE Trait Data includes information on 17 plant traits for 4,079 vascular plant species from grassland experiments worldwide.
  • This dataset can help researchers explore the effects of global change on diverse plant populations and ecosystems.
View Article and Find Full Text PDF

Agricultural grasslands play an important role in conserving the biodiversity of the European cultural landscape. Both, litter cover and soil nutrient availability, change with grassland management, but it is not well-studied how seedling recruitment and growth of multiple grassland species are influenced by their single or combined effects. Therefore, we studied the effects of nitrogen fertilization (100 kg N per year and ha) and litter cover (250 g per m) on seedling recruitment and growth of 75 temperate grassland species (16 graminoid species, 51 forb species, 8 legume species) in a full factorial microcosm experiment.

View Article and Find Full Text PDF
Article Synopsis
  • The current land management practices are jeopardizing the essential functions of ecosystems, which are crucial for human health and welfare.
  • This study evaluates the relationship between the functionality of agroecosystems in Central Germany and factors like land use and climate through a comprehensive analysis involving various stakeholders' preferences.
  • Results indicate that intensive farming typically reduces ecological multifunctionality, while sustainable practices yield significantly higher economic benefits, thereby suggesting a shift towards incentivizing sustainable land management for improved outcomes for both nature and society.
View Article and Find Full Text PDF

Plant species respond to varying plant species diversity and associated changes in their abiotic and biotic environment with changes in their phenotype. However, it is not clear to what degree this phenotypic differentiation is due to genotype diversity within populations or phenotypic plasticity of plant individuals. We studied individuals of 16 populations of the clonal herb grown in plant communities of different species richness in a 17-year-old grassland biodiversity experiment (Jena Experiment).

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how plant diversity affects grassland productivity (or overyielding) in relation to nitrogen (N) addition, revealing that nutrient enrichment does not change overyielding rates overall, despite altering its driving factors.
  • It finds that as nitrogen is added over time, the positive interactions between different plant species (complementarity effects) decrease while the success of certain dominant species (selection effects) increases.
  • The results highlight the need to understand cumulative N addition's role in grassland ecosystems, which is crucial for biodiversity conservation and maintaining ecosystem resilience against rising nitrogen levels.
View Article and Find Full Text PDF

It is well known that biodiversity positively affects ecosystem functioning, leading to enhanced ecosystem stability. However, this knowledge is mainly based on analyses using single ecosystem functions, while studies focusing on the stability of ecosystem multifunctionality (EMF) are rare. Taking advantage of a long-term grassland biodiversity experiment, we studied the effect of plant diversity (1-60 species) on EMF over 5 years, its temporal stability, as well as multifunctional resistance and resilience to a 2-year drought event.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is making droughts (periods without rain) happen more often and for longer periods of time, which is bad for ecosystems.
  • Scientists did a big experiment in many places around the world to see how one year of drought affects grasslands and shrublands.
  • They found that extreme drought can reduce plant growth much more than expected, especially in dry areas with fewer types of plants, showing that these places are more at risk.
View Article and Find Full Text PDF

Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients.

View Article and Find Full Text PDF

Eutrophication usually impacts grassland biodiversity, community composition, and biomass production, but its impact on the stability of these community aspects is unclear. One challenge is that stability has many facets that can be tightly correlated (low dimensionality) or highly disparate (high dimensionality). Using standardized experiments in 55 grassland sites from a globally distributed experiment (NutNet), we quantify the effects of nutrient addition on five facets of stability (temporal invariability, resistance during dry and wet growing seasons, recovery after dry and wet growing seasons), measured on three community aspects (aboveground biomass, community composition, and species richness).

View Article and Find Full Text PDF

Positive plant diversity-productivity relationships are known to be driven by complementary resource use via differences in plant functional traits. Moreover, soil properties related to nutrient availability were shown to change with plant diversity over time; however, it is not well-understood whether and how such plant diversity-dependent soil changes and associated changes in functional traits contribute to positive diversity-productivity relationships in the long run. To test this, we investigated plant communities of different species richness (1, 2, 6, and 9 species) in a 15-year-old grassland biodiversity experiment.

View Article and Find Full Text PDF
Article Synopsis
  • Numerous studies show that biodiversity positively impacts ecosystem functioning, but the long-term effects of biodiversity loss on these ecosystems are not well understood.
  • A 17-year grassland biodiversity experiment revealed that less diverse communities experienced a faster decline in productivity, leading to stronger positive effects of species richness on productivity, complementarity, and stability over time.
  • In later years, asynchrony among species became crucial for increasing community stability, indicating that mechanisms for stabilizing ecosystem functioning can evolve as plant communities age.
View Article and Find Full Text PDF

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance.

View Article and Find Full Text PDF

Long-term analyses of biodiversity data highlight a 'biodiversity conservation paradox': biological communities show substantial species turnover over the past century, but changes in species richness are marginal. Most studies, however, have focused only on the incidence of species, and have not considered changes in local abundance. Here we asked whether analysing changes in the cover of plant species could reveal previously unrecognized patterns of biodiversity change and provide insights into the underlying mechanisms.

View Article and Find Full Text PDF

Vegetation-plot resurvey data are a main source of information on terrestrial biodiversity change, with records reaching back more than one century. Although more and more data from re-sampled plots have been published, there is not yet a comprehensive open-access dataset available for analysis. Here, we compiled and harmonised vegetation-plot resurvey data from Germany covering almost 100 years.

View Article and Find Full Text PDF

Global change has dramatic impacts on grassland diversity. However, little is known about how fast species can adapt to diversity loss and how this affects their responses to global change. Here, we performed a common garden experiment testing whether plant responses to global change are influenced by their selection history and the conditioning history of soil at different plant diversity levels.

View Article and Find Full Text PDF

Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic differentiation and phenotypic plasticity both contribute to variation in traits within a species, but their influence differs between types of traits in short-lived plants.
  • In a study of Plantago lanceolata, researchers used greenhouse experiments and field data to analyze how traits respond to environmental changes.
  • They found that reproductive traits are primarily influenced by genetic factors related to fitness, while vegetative traits demonstrate greater plasticity, which complicates understanding the genetic influences in natural settings.
View Article and Find Full Text PDF

Experiments showed that biodiversity increases grassland productivity and nutrient exploitation, potentially reducing fertiliser needs. Enhancing biodiversity could improve P-use efficiency of grasslands, which is beneficial given that rock-derived P fertilisers are expected to become scarce in the future. Here, we show in a biodiversity experiment that more diverse plant communities were able to exploit P resources more completely than less diverse ones.

View Article and Find Full Text PDF

The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cA , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.

View Article and Find Full Text PDF

Long-term biodiversity experiments have shown increasing strengths of biodiversity effects on plant productivity over time. However, little is known about rapid evolutionary processes in response to plant community diversity, which could contribute to explaining the strengthening positive relationship. To address this issue, we performed a transplant experiment with offspring of seeds collected from four grass species in a 14-year-old biodiversity experiment (Jena Experiment).

View Article and Find Full Text PDF

Diversity loss has been shown to change the soil community; however, little is known about long-term consequences and underlying mechanisms. Here, we investigated how nematode communities are affected by plant species richness and whether this is driven by resource quantity or quality in 15-year-old plant communities of a long-term grassland biodiversity experiment. We extracted nematodes from 93 experimental plots differing in plant species richness, and measured above- and belowground plant biomass production and soil organic carbon concentrations (C) as proxies for resource quantity, as well as C/N ratio and specific root length (SRL) as proxies for resource quality.

View Article and Find Full Text PDF