Voltage-gated sodium channels, Nav1, play a crucial role in the generation and propagation of action potentials and substantially contribute to the shape of their rising phase. The electric organ discharge (EOD) of African weakly electric fish (Mormyroidea) is the sum of action potentials fired from all electrocytes of the electric organ at the same time and hence voltage-gated sodium channels are one factor-together with the electrocyte's morphology and innervation pattern-that determines the properties of these EODs. Due to the fish-specific genome duplication, teleost fish possess eight copies of sodium channel genes (SCN), which encode for Nav1 channels.
View Article and Find Full Text PDFAfrican weakly-electric fishes (Mormyridae) are able to communicate through species-specific electric signals; this feature might have favoured the evolutionary radiation observed in this family (over 200 species) by acting as an effective pre-zygotic isolation mechanism. In the present study we used mitochondrial (cytb) and nuclear (rps7, scn4aa) markers in order to reconstruct a species-phylogeny and identify species boundaries for the genus Campylomormyrus, by applying inference methods based on the multispecies coalescent model. Additionally, we employed 16 microsatellite markers, landmark-based morphometric measurements, and electro-physiological analyses as independent lines of evidence to the results obtained from the sequence data.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
April 2015
The electric organ (EO) of weakly electric mormyrids consists of flat, disk-shaped electrocytes with distinct anterior and posterior faces. There are multiple species-characteristic patterns in the geometry of the electrocytes and their innervation. To further correlate electric organ discharge (EOD) with EO anatomy, we examined four species of the mormyrid genus Campylomormyrus possessing clearly distinct EODs.
View Article and Find Full Text PDFAnnelida, the ringed worms, is a highly diverse animal phylum that includes more than 15,000 described species and constitutes the dominant benthic macrofauna from the intertidal zone down to the deep sea. A robust annelid phylogeny would shape our understanding of animal body-plan evolution and shed light on the bilaterian ground pattern. Traditionally, Annelida has been split into two major groups: Clitellata (earthworms and leeches) and polychaetes (bristle worms), but recent evidence suggests that other taxa that were once considered to be separate phyla (Sipuncula, Echiura and Siboglinidae (also known as Pogonophora)) should be included in Annelida.
View Article and Find Full Text PDF