For about 10 years, a new variant of the pathogen () has appeared in Germany, characterized by a previously unobserved culture phenotype with a strong yellow reverse. A few studies suggest that this new variety is now the most common zoophilic dermatophyte in Germany. The guinea pig is the main carrier.
View Article and Find Full Text PDFBackground: A new genotype of the zoophilic fungal species Trichophyton (T.) mentagrophytes was recently described in two studies. It was isolated from three patients who had visited Southeast Asia and one patient who had visited Egypt.
View Article and Find Full Text PDFThe mating type (MAT) locus is the key regulator of sexual reproduction in fungi. In the dermatophytes and other Ascomycetes this genomic region exists in two distinct forms (idiomorphs) and their balanced presence is a precondition for successful mating in heterothallic fungi. But the MAT locus not only drives sexual reproduction, it has also been shown to influence pathogenicity, virulence, and/or morphological changes in pathogenic fungi of the genera Candida, Histoplasma, and Cryptococcus.
View Article and Find Full Text PDFDermatophyte research has renewed interest because of changing human floras with changing socioeconomic conditions, and because of severe chronic infections in patients with congenital immune disorders. Main taxonomic traits at the generic level have changed considerably, and now fine-tuning at the species level with state-of-the-art technology has become urgent. Research on virulence factors focuses on secreted proteases now has support in genome data.
View Article and Find Full Text PDFIntroduction: Trichophyton verrucosum belongs to the dermatophyte fungi, closely related organisms that cause skin infections in animals and humans. T. verrucosum infection has been reported in livestock and people in different countries from all continents.
View Article and Find Full Text PDFType and reference strains of members of the onygenalean family Arthrodermataceae have been sequenced for rDNA ITS and partial LSU, the ribosomal 60S protein, and fragments of β-tubulin and translation elongation factor 3. The resulting phylogenetic trees showed a large degree of correspondence, and topologies matched those of earlier published phylogenies demonstrating that the phylogenetic representation of dermatophytes and dermatophyte-like fungi has reached an acceptable level of stability. All trees showed Trichophyton to be polyphyletic.
View Article and Find Full Text PDFChloroplast RNA metabolism is mediated by a multitude of nuclear encoded factors, many of which are highly specific for individual RNA processing events. In addition, a family of chloroplast ribonucleoproteins (cpRNPs) has been suspected to regulate larger sets of chloroplast transcripts. This together with their propensity for posttranslational modifications in response to external cues suggested a potential role of cpRNPs in the signal-dependent coregulation of chloroplast genes.
View Article and Find Full Text PDFChloroplast RNA metabolism is characterized by multiple RNA processing steps that require hundreds of RNA binding proteins. A growing number of RNA binding proteins have been shown to mediate specific RNA processing steps in the chloroplast, but little do we know about their regulatory importance or mode of molecular action. This review summarizes knowledge on chloroplast proteins that contain an RNA recognition motif, a classical RNA binding domain widespread in pro- and eukaryotes.
View Article and Find Full Text PDFChloroplast ribonucleoproteins (cpRNPs) are nuclear-encoded, highly abundant, and light-regulated RNA binding proteins. They have been shown to be involved in chloroplast RNA processing and stabilization in vitro and are phylogenetically related to the well-described heterogeneous nuclear ribonucleoproteins (hnRNPs). cpRNPs have been found associated with mRNAs present in chloroplasts and have been regarded as nonspecific stabilizers of chloroplast transcripts.
View Article and Find Full Text PDF