Background: Grades II and III gliomas have unpredictable rates of progression, making management decisions difficult. Currently, several clinical and radiological characteristics are utilized to predict progression and survival but collectively are suboptimal.
Methods: In this study, we analyzed a set of 108 nonenhancing hemispheric grade II-III gliomas.
The endogenous metabolite of estradiol, 2-Methoxyestradiol (2ME2), is an antimitotic and antiangiogenic cancer drug candidate that also exhibits disease-modifying activity in animal models of rheumatoid arthritis (RA). We found that 2ME2 dramatically suppresses development of mouse experimental autoimmune encephalomyelitis (EAE), a rodent model of multiple sclerosis (MS). 2ME2 inhibits in vitro lymphocyte activation, cytokine production, and proliferation in a dose-dependent fashion.
View Article and Find Full Text PDFEffector functions of inflammatory IL-17-producing Th (Th17) cells have been linked to autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). However, what determines Th17 cell encephalitogenicity is still unresolved. Here, we show that after EAE induction, mice deficient for the NF-κB regulator MALT1 (Malt1-/- mice) exhibit strong lymphocytic infiltration in the CNS, but do not develop any clinical signs of EAE.
View Article and Find Full Text PDFIsocitrate dehydrogenase-1 (IDH1) R132 mutations occur in glioma, but their physiological significance is unknown. Here we describe the generation and characterization of brain-specific Idh1 R132H conditional knock-in (KI) mice. Idh1 mutation results in hemorrhage and perinatal lethality.
View Article and Find Full Text PDFMutations in the IDH1 and IDH2 genes encoding isocitrate dehydrogenases are frequently found in human glioblastomas and cytogenetically normal acute myeloid leukaemias (AML). These alterations are gain-of-function mutations in that they drive the synthesis of the ‘oncometabolite’ R-2-hydroxyglutarate (2HG). It remains unclear how IDH1 and IDH2 mutations modify myeloid cell development and promote leukaemogenesis.
View Article and Find Full Text PDFAlthough monoallelic expression (MAE) is a frequent genomic event in normal tissues, its role in tumorigenesis remains unclear. Here we carried out single-nucleotide polymorphism arrays on DNA and RNA from a large cohort of pediatric and adult brain tumor tissues to determine the genome-wide rate of MAE, its role in specific cancer-related genes, and the clinical consequences of MAE in brain tumors. We also used targeted genotyping to examine the role of tumor-related genes in brain tumor development and specifically examined the clinical consequences of MAE at TP53 and IDH1.
View Article and Find Full Text PDFDJ-1 is a small but relatively abundant protein of unknown function that may undergo stress-dependent cellular translocation and has been implicated in both neurodegenerative diseases and cancer. As such, DJ-1 may be an excellent study object to elucidate the relative influence of the cellular context on its interactome and for exploring whether acute exposure to oxidative stressors alters its molecular environment. Using quantitative mass spectrometry, we conducted comparative DJ-1 interactome analyses from in vivo cross-linked brains or livers and from hydrogen peroxide-treated or naïve embryonic stem cells.
View Article and Find Full Text PDFCombined deletion of chromosomal arms 1p and 19q is an independent prognostic marker in patients with oligodendroglial brain tumors, including oligodendrogliomas and oligoastrocytomas. However, the relevant genes in these chromosome arms and the molecular mechanisms underlying the prognostic significance of 1p/19q deletion are yet unknown. We used two-dimensional difference gel electrophoresis followed by mass spectrometry to perform a proteome-wide profiling of low-grade oligoastrocytomas stratified for the presence or absence of 1p/19q deletions.
View Article and Find Full Text PDFAberrant expression of the platelet-derived growth factor alpha-receptor (PDGFRA) gene has been associated with various diseases, including neural tube defects and gliomas. We have previously identified 5 distinct haplotypes for the PDGFRA promoter region, designated H1, H2alpha, H2beta, H2gamma and H2delta. Of these haplotypes H1 and H2alpha are the most common, whereby H1 drives low and H2alpha high transcriptional activity in transient transfection assays.
View Article and Find Full Text PDFThe protein tyrosine kinase inhibitor, genistein, has been reported to inhibit proliferation and to induce cell death in various non-solid and solid cancer cell lines. Herein, we examined the effects of genistein in several human malignant glioma cell lines. We found that genistein inhibited the proliferation of LN-18, LNT-229, LN-308 and T98G cells at EC50 concentrations of 25-80 microM (72 h of exposure).
View Article and Find Full Text PDFFocal cortical dysplasias (FCD) with Taylor-type balloon cells (FCD(IIb)) are frequently observed in biopsy specimens of patients with pharmacoresistant focal epilepsies. The molecular pathogenesis of FCD(IIb), which lack familial inheritance, is only poorly understood. Due to their highly differentiated, malformative nature and glioneuronal phenotype, FCD(IIb) share neuropathological characteristics with lesions observed in familial disorders such as cortical tubers present in patients with autosomal dominant tuberous sclerosis complex (TSC), related to mutations in the TSC1 or TSC2 genes, and dysplastic gangliocytomas of the cerebellum found in Cowden disease.
View Article and Find Full Text PDFTo identify novel genes involved in glioma progression we performed suppression subtractive hybridization combined with cDNA array analysis on 4 patients with primary low-grade gliomas of World Health Organization (WHO) grade II that recurred as secondary glioblastomas (WHO grade IV). Eight genes showing differential expression between primary and recurrent tumors in 3 of the 4 patients were selected for further analysis using real-time reverse transcription-PCR on a series of 10 pairs of primary low-grade and recurrent high-grade gliomas as well as 42 astrocytic gliomas of different WHO grades. These analyses revealed that 5 genes, i.
View Article and Find Full Text PDFAberrant activation of Ras signaling is a common finding in human glioblastomas. To determine the contribution of Ras gene mutations to this aberration, we screened 94 glioblastomas for mutations in the three Ras family genes NRAS, KRAS and HRAS. All tumors were additionally analyzed for mutations in BRAF, which encodes a Ras-regulated serine/threonine kinase with oncogenic properties.
View Article and Find Full Text PDFThe carboxyl-terminal modulator protein (CTMP) has been identified as a negative regulator of protein kinase B/Akt. Aberrant Akt signaling is frequently observed in glioblastomas, the most common and most malignant glial brain tumors. Because loss of CTMP function and/or expression may remove the inhibitory effects on Akt and promote tumorigenesis, we studied 93 primary glioblastomas and nine glioblastoma cell lines for CTMP deletion, mutation, promoter hypermethylation, and mRNA expression.
View Article and Find Full Text PDFRas signaling is important for the intracellular transduction of mitogenic stimuli from activated growth factor receptors. We have investigated 37 sporadic malignant melanomas (15 primary cutaneous melanomas and 22 melanoma metastases) and 6 melanoma cell lines for mutations in the 3 Ras genes NRAS, KRAS and HRAS. All tumors and cell lines were additionally analyzed for mutation and expression of BRAF, which encodes a Ras-regulated serine/threonine kinase with oncogenic properties, as well as for expression of RASSF1A, which encodes a Ras-binding protein with tumor suppressor properties.
View Article and Find Full Text PDFGlioblastomas frequently carry mutations in the PTEN tumor suppressor gene on 10q23.3. The tumor suppressor properties of Pten are closely related to its inhibitory effect on the phosphatidyl-inositol-3'-kinase (Pi3k)-dependent activation of protein kinase B (Akt) signalling.
View Article and Find Full Text PDFWe previously reported on the amplification and overexpression of the mouse double minute 4 homolog gene (MDM4) from 1q32 in a subset of malignant gliomas (Riemenschneider et al., Cancer Res 1999;59:6091-6). More recently, amplification and overexpression of the neighboring contactin 2 gene (CNTN2) was reported in individual malignant gliomas without MDM4 amplification (Rickman et al.
View Article and Find Full Text PDFGliomatosis cerebri is a rare, diffusely growing neuroepithelial tumor characterized by extensive brain infiltration involving more than two cerebral lobes. Among 13 patients with gliomatosis cerebri (median age, 46 years), biopsies showed features of diffuse astrocytoma (n = 4), oligoastrocytoma (n = 1), anaplastic astrocytoma (n = 5), anaplastic oligoastrocytoma (n = 1), or glioblastoma (n = 2). Molecular genetic investigation showed TP53 mutations in three of seven tumors and both PTEN mutation and epidermal growth factor receptor overexpression in one tumor.
View Article and Find Full Text PDFAberrant activation of the Wnt signaling pathway has been reported in different human tumor types, including malignant melanomas. We investigated 37 malignant melanomas (15 primary tumors and 22 metastases) for alterations of 4 genes encoding members of this pathway, i.e.
View Article and Find Full Text PDFGliosarcoma is a variant of glioblastoma multiforme characterized by two components displaying gliomatous or sarcomatous differentiation. We investigated 38 gliosarcomas for aberrations of tumor-suppressor genes and proto-oncogenes that are commonly altered in glioblastomas. Amplification of CDK4, MDM2, EGFR, and PDGFRA were found in 11% (4/35), 8% (3/38), 8% (3/38), and 3% (1/35) of the tumors, respectively.
View Article and Find Full Text PDFIn 1997, the PTEN gene (phosphatase and tensin homolog deleted on chromosome 10) was identified as a tumor suppressor gene on the long arm of chromosome 10. Since then, important progress has been made with respect to the understanding of the role of the Pten protein in the normal development of the brain as well as in the molecular pathogenesis of human gliomas. This review summarizes the current state of the art concerning the involvement of aberrant Pten function in the development of different biologic features of malignant gliomas, such as loss of cell-cycle control and uncontrolled cell proliferation, escape from apoptosis, brain invasion, and aberrant neoangiogenesis.
View Article and Find Full Text PDF