One of the most extensive forms of natural genome editing occurs in ciliates, a group of microbial eukaryotes. Ciliate germline and somatic genomes are contained in distinct nuclei within the same cell. During the massive reorganization process of somatic genome development, ciliates eliminate tens of thousands of DNA sequences from a germline genome copy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2024
Most eukaryotes have one nucleus and nuclear genome per cell. Ciliates have instead evolved distinct nuclei that coexist in each cell: a silent germline vs. transcriptionally active somatic nuclei.
View Article and Find Full Text PDFInsects typically acquire their beneficial microbes early in development. Endosymbionts housed intracellularly are commonly integrated during oogenesis or embryogenesis, whereas extracellular microbes are only known to be acquired after hatching by immature instars such as larvae or nymphs. Here, however, we report on an extracellular symbiont that colonizes its host during embryo development.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
During their development following sexual conjugation, ciliates excise numerous internal eliminated sequences (IESs) from a copy of the germline genome to produce the functional somatic genome. Most IESs are thought to have originated from transposons, but the presumed homology is often obscured by sequence decay. To obtain more representative perspectives on the nature of IESs and ciliate genome editing, we assembled 40,000 IESs of , a species belonging to a lineage (Heterotrichea) that diverged early from those of the intensively studied model ciliate species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
Massive DNA excision occurs regularly in ciliates, ubiquitous microbial eukaryotes with somatic and germline nuclei in the same cell. Tens of thousands of internally eliminated sequences (IESs) scattered throughout the ciliate germline genome are deleted during the development of the streamlined somatic genome. The genus represents one of the two high-level ciliate clades (subphylum Postciliodesmatophora) and, unusually, has dual pathways of somatic nuclear and genome development.
View Article and Find Full Text PDFLoxodes is one of the best ecologically characterized ciliate genera with numerous intriguing physiological abilities, including gravity-sensing organelles and nitrate respiration. However, these cells have been considered challenging to cultivate in bulk, and are poorly preserved by conventional fixatives used for fluorescence microscopy. Here we describe methods to grow and harvest Loxodes cells in bulk with liquid soil extract medium, as well as a new fixative called ZFAE (zinc sulfate, formaldehyde, acetic acid, ethanol) that can fix Loxodes cells more effectively than buffered formaldehyde or methanol.
View Article and Find Full Text PDFThe macronuclear (MAC) genomes of ciliates belonging to the genus Euplotes species are comprised of numerous small DNA molecules, nanochromosomes, each typically encoding a single gene. These genomes are responsible for all gene expression during vegetative cell growth. Here, we report the analysis of the MAC genome from the Antarctic psychrophile Euplotes focardii.
View Article and Find Full Text PDFDuring mRNA localization, RNA-binding proteins interact with specific structured mRNA localization motifs. Although several such motifs have been identified, we have limited structural information on how these interact with RNA-binding proteins. Staufen proteins bind structured mRNA motifs through dsRNA-binding domains (dsRBD) and are involved in mRNA localization in and mammals.
View Article and Find Full Text PDFMycobacteria are endowed with rich and diverse machinery for the synthesis, utilization, and degradation of cAMP. The actions of cyclic nucleotides are generally mediated by binding of cAMP to conserved and well characterized cyclic nucleotide binding domains or structurally distinct cGMP-specific and -regulated cyclic nucleotide phosphodiesterase, adenylyl cyclase, and E. coli transcription factor FhlA (GAF) domain-containing proteins.
View Article and Find Full Text PDF