The architectural complexity and heterogeneity of the tumor microenvironment (TME) remains a substantial obstacle in the successful treatment of cancer. Hypoxia, caused by insufficient oxygen supply, and acidosis, resulting from the expulsion of acidic metabolites, are prominent features of the TME. To mitigate the consequences of the hostile TME, cancer cells metabolically rewire themselves and express a series of specific transporters and enzymes instrumental to this adaptation.
View Article and Find Full Text PDFThe effector functions of the IgGs are modulated by the N-glycosylation of their Fc region. Particularly, the absence of core fucosylation is known to increase the affinity of IgG1s for the Fcγ receptor IIIa expressed by immune cells, in turn translating in an improvement in the antibody-dependent cellular cytotoxicity. However, the impact of galactosylation and sialylation is still debated in the literature.
View Article and Find Full Text PDFDeregulation of TGF-β superfamily signaling is a causative factor in many diseases. Here we describe a protein engineering strategy for the generation of single-chain bivalent receptor traps for TGF-β superfamily ligands. Traps were assembled using the intrinsically disordered regions flanking the structured binding domain of each receptor as "native linkers" between two binding domains.
View Article and Find Full Text PDFSeveral reports have shown that secreted clusterin (sCLU) plays multiple roles in tumor development and metastasis. Here, we report on a 12-mer sCLU binding peptide (designated P3378) that was identified by screening a phage-display peptide library against purified human sCLU. Differential resonance perturbation nuclear magnetic resonance using P3378 and a scrambled control peptide (designated P3378R) confirmed the P3378-sCLU interaction and demonstrated that it was sequence specific.
View Article and Find Full Text PDFJ Bioinform Comput Biol
February 2010
An unsupervised multi-strategy approach has been developed to identify informative genes from high throughput genomic data. Several statistical methods have been used in the field to identify differentially expressed genes. Since different methods generate different lists of genes, it is very challenging to determine the most reliable gene list and the appropriate method.
View Article and Find Full Text PDFBackground: Many putative disease blood biomarkers discovered in genomic and proteomic studies await validation in large clinically annotated cohorts of patient samples. ELISA assays require large quantities of precious blood samples and are not high-throughput. The reverse phase protein microarray platform has been developed for the high-throughput quantification of protein levels in small amounts of clinical samples.
View Article and Find Full Text PDFBackground: TGF-beta acts as an antiproliferative factor in normal epithelial cells and at early stages of oncogenesis. However, later in tumor development TGF-beta can become tumor promoting through mechanisms including the induction of epithelial-to-mesenchymal transition (EMT), a process that is thought to contribute to tumor progression, invasion and metastasis. To identify EMT-related breast cancer therapeutic targets and biomarkers, we have used two proteomic approaches to find proteins that change in abundance upon the induction of EMT by TGF-beta in two mouse mammary epithelial cell lines, NMuMG and BRI-JM01.
View Article and Find Full Text PDFIntroduction: This report describes the isolation and characterization of three new murine mammary epithelial cell lines derived from mammary tumors from MMTV (mouse mammary tumor virus)/activated Neu + TbetaRII-AS (transforming growth factor [TGF]-beta type II receptor antisense RNA) bigenic mice (BRI-JM01 and BRI-JM05 cell lines) and MMTV/activated Neu transgenic mice (BRI-JM04 cell line).
Methods: The BRI-JM01, BRI-JM04, and BRI-JM05 cell lines were analyzed for transgene expression, their general growth characteristics, and their sensitivities to several growth factors from the epidermal growth factor (EGF) and TGF-beta families (recombinant human EGF, heregulin-beta1 and TGF-beta1). The BRI-JM01 cells were observed to undergo a striking morphologic change in response to TGF-beta1, and they were therefore further investigated for their ability to undergo a TGF-beta-induced epithelial-to-mesenchymal transition (EMT) using motility assays and immunofluorescence microscopy.