Publications by authors named "Christiana X Zhang"

Copper-dioxygen interactions are of intrinsic importance in a wide range of biological and industrial processes. Here, we present detailed kinetic/thermodynamic studies on the O(2)-binding and arene hydroxylation reactions of a series of xylyl-bridged binuclear copper(I) complexes, where the effects of ligand electronic and structural elements on these reactions are investigated. Ligand 4-pyridyl substituents influence the reversible formation of side-on bound μ-η(2):η(2)-peroxodicopper(II) complexes, with stronger donors leading to more rapid formation and greater thermodynamic stability of product complexes [Cu(II) (2)((R)XYL)(O(2) (2-))](2+).

View Article and Find Full Text PDF

The activity of the anticancer drug cisplatin is a consequence of its ability to bind DNA. Platinum adducts bend and unwind the DNA duplex, creating recognition sites for nuclear proteins. Following DNA damage recognition, the lesions will either be repaired, facilitating cell viability, or if repair is unsuccessful and the Pt adduct interrupts vital cellular functions, apoptosis will follow.

View Article and Find Full Text PDF

A series of copper-dioxygen adducts [{Cu(II)(MePY2)(R)}(2)(O(2))](B(C(6)F(5))(4))(2) (1(R)()), systematically varying in their electronic properties via ligand pyridyl donor substituents (R = H, MeO, and Me(2)N), oxidize a variety of substrates with varying C-H or O-H bond dissociation enthalpies. Detailed mechanistic studies have been carried out, including investigation of 1(R)() thermodynamic redox properties, 1(R)() tetrahydrofuran (THF) and N,N'-dimethylaniline (DMA) oxidation kinetics (including analyses of substrate dicopper binding equilibria), and application of mechanistic probes (N-cyclopropyl-N-methylaniline (CMA) and (p-methoxyphenyl)-2,2-dimethylpropanol (MDP)), which can distinguish if proton-coupled electron-transfer (PCET) processes proceed through concerted electron-transfer proton-transfer (ETPT) or consecutive electron-transfer proton-transfer (ET/PT) pathways. The results are consistent with those of previous complementary studies; at low thermodynamic driving force for substrate oxidation, an ET/PT is operable, but once ET (i.

View Article and Find Full Text PDF

A new tridentate ligand, PYAN, is employed to investigate solvent influences for dioxygen reactivity with [Cu(PYAN)(MeCN)]B(C(6)F(5))(4) (1). Stopped-flow kinetic studies confirm that the adducts [[u(II)(PYAN)]2)(O(2))][B(C(6)F(5))(4)](2) (2(Peroxo)) and [[u(III)(PYAN)]2)(O)(2)][B(C(6)F(5))(4)](2) (2(Oxo)) are in rapid equilibrium. Thermodynamic parameters for the equilibrium between 2(Peroxo) and 2(Oxo) re as follows: THF, deltaH degrees approximately -15.

View Article and Find Full Text PDF

Interactions between cellular proteins and cisplatin-modified DNA are important in determining the anticancer activity of the drug. To develop a general approach for identifying proteins that mediate cellular responses to cisplatin, photoreactive cisplatin analogues having a tethered benzophenone moiety were prepared and used to form the major 1,2-intrastrand platinum-DNA cross-links. Upon irradiation of the platinated DNA dissolved in a HeLa nuclear extract, the appended photolabile benzophenone group generates a highly reactive species that binds irreversibly to cellular proteins that interact with the probe.

View Article and Find Full Text PDF

Copper-dioxygen adducts are important biological oxidants. To gain a better understanding of the underlying chemistries of such species, we report on a series of Cu2II-O2 complexes, [{CuII(MePY2)R'}2(O2)](B(C6F5)4)2 (1R') (where (MePY2)R' is a 4-pyridyl substituted bis[2-(2-(4-R'-pyridyl)ethyl]methylamine; R' = H, MeO, Me2N; Zhang, C. X.

View Article and Find Full Text PDF

The many activities of metal ions in biology have stimulated the development of metal-based therapeutics. Cisplatin, as one of the leading metal-based drugs, is widely used in treatment of cancer, being especially effective against genitourinary tumors such as testicular. Significant side effects and drug resistance, however, have limited its clinical applications.

View Article and Find Full Text PDF

The effect of endogenous donor strength on Cu(2)O(2) bonds was studied by electronically perturbing [[(R-TMPA)Cu(II)]](2)(O(2))](2+) and [[(R-MePY2)Cu](2)(O(2))](2+) (R = H, MeO, Me(2)N), which form the end-on mu-1,2 bound peroxide and an equilibrium mixture of side-on peroxo-dicopper(II) and bis-mu-oxo-dicopper(III) isomers, respectively. For [[(R-TMPA)Cu(II)](2)(O(2))](2+), nu(O-O) shifts from 827 to 822 to 812 cm(-1) and nu(Cu)(-)(O(sym)) shifts from 561 to 557 to 551 cm(-1), respectively, as R- varies from H to MeO to Me(2)N. Thus, increasing the N-donor strength to the copper decreases peroxide pi(sigma) donation to the copper, weakening the Cu-O and O-O bonds.

View Article and Find Full Text PDF

The kinetic and thermodynamic behavior of O(2)-binding to Cu(I) complexes can provide fundamental understanding of copper(I)/dioxygen chemistry, which is of interest in chemical and biological systems. Here we report stopped-flow kinetic investigations of the oxygenation reactions of a series of tetradentate copper(I) complexes [(L(R))Cu(I)(MeCN)](+) (1(R), R=H, Me, tBu, MeO, Me(2)N) in propionitrile (EtCN), tetrahydrofuran (THF), and acetone. The syntheses of 4-pyridyl substituted tris(2-pyridylmethyl)amine ligands (L(R)) and copper(I) complexes are detailed.

View Article and Find Full Text PDF

Copper(I)-dioxygen adducts are important in biological and industrial processes. For the first time we explore the relationship between ligand electronics, CuI-O2 adduct formation and exogenous substrate reactivity. The copper(I) complexes [CuI(R-MePY2)]+ (1R, where R = Cl, H, MeO, Me2N) were prepared; where R-MePY2 are 4-pyridyl substituted bis[2-(2-pyridyl)ethyl]methylamine chelates.

View Article and Find Full Text PDF

Copper(I)-dioxygen interactions are of great interest due to their role in biological O2-processing as well as their importance in industrial oxidation processes. We describe here the study of systems which lead to new insights concerning the factors which govern Cu(II)-mu-eta2:eta2 (side-on) peroxo versus Cu(III)-bis-mu-oxo species formation. Drastic differences in O2-reactivity of Cu(I) complexes which differ only by a single -CH3 versus -H substituent on the central amine of the tridentate ligands employed are observed.

View Article and Find Full Text PDF