The cellular protein homeostasis (proteostasis) network responds effectively to insults. In a functional screen in C. elegans, we recently identified the gene receptor-mediated endocytosis 8 (rme-8; human ortholog: DNAJC13) as a component of the proteostasis network.
View Article and Find Full Text PDFIn the article "Predetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system" we combined our expertise to identify glial cells of the embryonic peripheral nervous system on a single cell resolution with the possibility to genetically label cells using Flybow. We show that all 12 embryonic peripheral glial cells (ePG) per abdominal hemisegment persist into larval (and even adult) stages and differentially contribute to the three distinct glial layers surrounding peripheral nerves. Repetitive labelings of the same cell further revealed that layer affiliation, morphological expansion, and control of proliferation are predetermined and subject to an intrinsic differentiation program.
View Article and Find Full Text PDFOne of the numerous functions of glial cells in Drosophila is the ensheathment of neurons to isolate them from the potassium-rich haemolymph, thereby establishing the blood-brain barrier. Peripheral nerves of flies are surrounded by three distinct glial cell types. Although all embryonic peripheral glia (ePG) have been identified on a single-cell level, their contribution to the three glial sheaths is not known.
View Article and Find Full Text PDFDevelopment of the nervous system and establishment of complex neuronal networks require the concerted activity of different signalling events and guidance cues, which include Netrins and their receptors. In Drosophila, two Netrins are expressed during embryogenesis by cells of the ventral midline and serve as attractant or repellent cues for navigating axons. We asked whether glial cells, which are also motile, are guided by similar cues to axons, and analysed the influence of Netrins and their receptors on glial cell migration during embryonic development.
View Article and Find Full Text PDFGlial cells are crucial for the proper development and function of the nervous system. In the Drosophila embryo, the glial cells of the peripheral nervous system are generated both by central neuroblasts and sensory organ precursors. Most peripheral glial cells need to migrate along axonal projections of motor and sensory neurons to reach their final positions in the periphery.
View Article and Find Full Text PDF