Publications by authors named "Christian de Santis"

The effects of low marine ingredient diets supplemented with graded levels (L1, L2, L3) of a micronutrient package (NP) on growth and metabolic responses were studied in diploid and triploid salmon parr. Diploids fed L2 showed significantly improved growth and reduced liver, hepatic steatosis, and viscerosomatic indices, while fish fed L3 showed suppressed growth rate 14 weeks post feeding. In contrast, dietary NP level had no effect on triploid performance.

View Article and Find Full Text PDF

The inclusion of intact phospholipids in the diet is essential during larval development and can improve culture performance of many fish species. The effects of supplementation of dietary phospholipid from marine (krill) or plant (soy lecithin) sources were investigated in Atlantic salmon, Salmo salar. First feeding fry were fed diets containing either krill oil or soybean lecithin supplying phospholipid at 2.

View Article and Find Full Text PDF

Background: The present study aimed to explore the impact of dietary docosahexaenoic acid (DHA) on aspects of the metabolism of Atlantic salmon (Salmo salar). The effects of diets containing increasing levels of DHA (1 g kg(-1), 3 g kg(-1), 6 g kg(-1), 10 g kg(-1) and 13 g kg(-1)) on the liver transcriptome of post-smolt salmon was examined to elucidate patterns of gene expression and responses of specific metabolic pathways. Total RNA was isolated from the liver of individual fish and analyzed using a custom gene expression 44K feature Atlantic salmon oligo-microarray.

View Article and Find Full Text PDF

The production of carnivorous fish such as Atlantic salmon (Salmo salar) is dependent on the availability of high quality proteins for feed formulations. For a number of nutritional, strategic and economic reasons, the use of plant proteins has steadily increased over the years, however a major limitation is associated with the presence of anti-nutritional factors and the nutritional profile of the protein concentrate. Investigating novel raw materials involves understanding the physiological consequences associated with the dietary inclusion of protein concentrates.

View Article and Find Full Text PDF

The aim of the present study was to generate an experimental model to characterize the nutrigenomic profile of a plant-derived nutritional stress. Atlantic salmon (Salmo salar) was used as the model species. The nutritional stress was induced by inclusion of dietary defatted soybean meal (SBM), as this ingredient had been previously demonstrated to induce enteropathy in the distal intestine and reduce growth in salmon.

View Article and Find Full Text PDF

The otx2 gene encodes a transcription factor (OTX2) essential in the formation of the brain and sensory systems. Specifically, OTX2-positive cells are associated with axons in the olfactory system of mice and otx2 is upregulated in odour-exposed zebrafish, indicating a possible role in olfactory imprinting. In this study, otx2 was used as a candidate gene to investigate the molecular mechanisms of olfactory imprinting to settlement cues in the coral reef anemonefish, Amphiprion percula.

View Article and Find Full Text PDF

Myostatin (MSTN) is a pivotal protein that regulates vertebrate muscle growth and development. Teleost fish possess two MSTN paralogs (MSTN-1 and MSTN-2) whose respective physiological functions are still largely unclear. To clarify the role of each of these paralogs the transcript abundance of Mstn-1 and Mstn-2 was quantified during embryonic and larval development of the teleosts, barramundi, Lates calcarifer.

View Article and Find Full Text PDF

Myostatin (MSTN) and growth differentiation factor-11 (GDF11) are closely related proteins involved in muscle cell growth and differentiation as well as neurogenesis of vertebrates. Both MSTN and GDF11 negatively regulate their functions. Invertebrates possess a single ortholog of the MSTN/GDF11 family.

View Article and Find Full Text PDF

Commonly used normalization approaches for quantitative reverse transcription polymerase chain reaction analyses include (a) input nucleic acids standardization (ΔC (q) method), (b) normalizing target gene transcript abundance against a single internal reference gene (ΔΔC (q) method), and (c) geometric averaging of multiple reference gene abundance using the geNorm software. We compared these three approaches to examine expression of a negative muscle growth regulator gene, myostatin-I (mstn-I), in the finfish Lates calcarifer, following 4 weeks of nutritional fasting. Interestingly, these three different approaches led to widely divergent data interpretations.

View Article and Find Full Text PDF

Background: Myostatin (MSTN) is a member of the transforming growth factor-beta superfamily that negatively regulates growth of skeletal muscle tissue. The gene encoding for the MSTN peptide is a consolidate candidate for the enhancement of productivity in terrestrial livestock. This gene potentially represents an important target for growth improvement of cultured finfish.

View Article and Find Full Text PDF