Publications by authors named "Christian Wolff"

Metal halide perovskites have shown exceptional potential in converting solar energy to electric power in photovoltaics, yet their application is hampered by limited operational stability. This stimulated the development of hybrid layered (two-dimensional, 2D) halide perovskites based on hydrophobic organic spacers, templating perovskite slabs, as a more stable alternative. However, conventional organic spacer cations are electronically insulating, resulting in charge confinement within the inorganic slabs, thus limiting their functionality.

View Article and Find Full Text PDF

Recent studies, typically using patient cerebrospinal fluid (CSF), have suggested that different autoantibodies (Aabs) acting on their respective receptors, may underlie neuropsychiatric disorders. The GluN1 (NR1) subunit of the N-methyl-D-aspartate receptor (NMDAR) has been identified as a target of anti-NMDAR Aabs in a number of central nervous system (CNS) diseases, including encephalitis and autoimmune epilepsy. However, the role or the nature of Aabs responsible for effects on neuronal excitability and synaptic plasticity is yet to be established fully.

View Article and Find Full Text PDF

We discuss the possibility of self-hybridisation in high-index dielectric nanoparticles, where Mie modes of electric or magnetic type can couple to the interband transitions of the material, leading to spectral anticrossings. Starting with an idealised system described by moderately high constant permittivity with a narrow Lorentzian, in which self-hybridisation is visible for both plane-wave and electron-beam excitation, we embark on a quest for realistic systems where this effect should be visible. We explore a variety of spherical particles made of traditional semiconductors such as Si, GaAs, and GaP.

View Article and Find Full Text PDF

Halide-perovskite semiconductors have a high potential for use in single-junction and tandem solar cells. Despite their unprecedented rise in power conversion efficiencies (PCEs) for photovoltaic (PV) applications, it remains unclear whether perovskite solar modules can reach a sufficient operational lifetime. In order to make perovskite solar cells (PSCs) commercially viable, a fundamental understanding of the relationship between their nanostructure, optoelectronic properties, device efficiency, and long-term operational stability/reliability needs to be established.

View Article and Find Full Text PDF

Whether illumination influences the ion conductivity in lead-halide perovskite solar cells containing iodide halides has been an ongoing debate. Experiments to elucidate the presence of a photoconductive effect require special devices or measurement techniques and neglect possible influences of the enhanced electronic charge concentrations. Here, we assess the electronic-ionic charge transport using drift-diffusion simulations and show that the well-known increase in capacitance at low frequencies under illumination is caused by electronic currents that are amplified due to the screening of the alternating electric field by the ions.

View Article and Find Full Text PDF
Article Synopsis
  • * Combining two phosphonic acid compounds, Me-4PACz and another PA with different functional groups, enhances film formation, improves charge transport, and reduces energy losses at the interface.
  • * Achieving a high current density of 40.2 mA/cm and greater than 30% power conversion efficiency, this research showcases the potential for creating highly efficient and industry-compatible tandem solar cells.
View Article and Find Full Text PDF
Article Synopsis
  • The study highlights that traditional light scattering analysis of plasmonic nanoparticles doesn't account for the finite thickness of real interfaces, which leads to unique surface effects due to quantum electron behavior.
  • By using electrical gating, the research investigates how charging single plasmonic nanoresonators affects light scattering, revealing that both resonance shifts and changes in resonance width can happen.
  • The findings suggest that these nonclassical surface responses could have significant applications in creating electrically controlled plasmonic devices and metasurfaces.
View Article and Find Full Text PDF
Article Synopsis
  • Pb-Sn solar cells use a special layer called PEDOT:PSS to help move electricity, but it has some problems that make it less efficient.
  • A new molecule called 2-fluoro benzylammonium iodide (FBI) helps fix these problems and makes the solar cells work better.
  • With this new molecule, scientists were able to create solar cells that have a higher efficiency of 20.5% and can produce more energy.
View Article and Find Full Text PDF

In face-to-face social interactions, emotional expressions provide insights into the mental state of an interactive partner. This information can be crucial to infer action intentions and react towards another person's actions. Here we investigate how facial emotional expressions impact subjective experience and physiological and behavioral responses to social actions during real-time interactions.

View Article and Find Full Text PDF

Up-scalable coating processes need to be developed to manufacture efficient and stable perovskite-based solar modules. In this work, we combine two Lewis base additives (N,N'-dimethylpropyleneurea and thiourea) to fabricate high-quality CsFAPbI perovskite films by blade-coating on large areas. Selected-area electron diffraction patterns reveal a minimization of stacking faults in the α-FAPbI phase for this specific cesium-formamidinium composition in both spin-coated and blade-coated perovskite films, demonstrating its scaling potential.

View Article and Find Full Text PDF

Epilepsy is a common neurological disorder characterized by abnormal activity of neuronal networks, leading to seizures. The racetam class of anti-seizure medications bind specifically to a membrane protein found in the synaptic vesicles of neurons called synaptic vesicle protein 2 (SV2) A (SV2A). SV2A belongs to an orphan subfamily of the solute carrier 22 organic ion transporter family that also includes SV2B and SV2C.

View Article and Find Full Text PDF

The technique of alloying FA with Cs is often used to promote structural stabilization of the desirable α-FAPbI phase in halide perovskite devices. However, the precise mechanisms by which these alloying approaches improve the optoelectronic quality and enhance the stability have remained elusive. In this study, we advance that understanding by investigating the effect of cationic alloying in CsFAPbI perovskite thin-films and solar-cell devices.

View Article and Find Full Text PDF

Background: Monitoring of gait patterns by insoles is popular to study behavior and activity in the daily life of people and throughout the rehabilitation process of patients. Live data analyses may improve personalized prevention and treatment regimens, as well as rehabilitation. The M-shaped plantar pressure curve during the stance phase is mainly defined by the loading and unloading slope, 2 maxima, 1 minimum, as well as the force during defined periods.

View Article and Find Full Text PDF
Article Synopsis
  • Automated high-throughput workflows are gaining importance for optimizing material stability, but many limitations exist, such as the use of unsuitable synthesis techniques and ambient conditions that hinder result transferability.
  • This study focuses on MAPbI thin films to demonstrate a new combinatorial inert-gas workflow for assessing materials' intrinsic degradation under controlled environments, simulating encapsulated device conditions.
  • Utilizing advanced automated characterization techniques and a custom UV-Vis aging setup, the research reveals insights into degradation kinetics and phase changes, supported by a machine learning model that connects optical spectra variations to aging processes, enabling better comparison of material stability across multiple samples.
View Article and Find Full Text PDF

Monitoring changes in gait during rehabilitation allows early detection of complications. Laboratory-based gait analyses proved valuable for longitudinal monitoring of lower leg fracture healing. However, continuous gait data recorded in the daily life may be superior due to a higher temporal resolution and differences in behavior.

View Article and Find Full Text PDF

The primary performance limitation in inverted perovskite-based solar cells is the interface between the fullerene-based electron transport layers and the perovskite. Atomic layer deposited thin aluminum oxide (AlO) interlayers that reduce nonradiative recombination at the perovskite/C interface are developed, resulting in >60 millivolts improvement in open-circuit voltage and 1% absolute improvement in power conversion efficiency. Surface-sensitive characterizations indicate the presence of a thin, conformally deposited AlO layer, functioning as a passivating contact.

View Article and Find Full Text PDF

Fatty acid esters of hydroxy fatty acids (FAHFAs), a newly discovered class of human endogenous complex lipids showing great promise for treating diabetes and inflammatory diseases, exist naturally in extremely low concentrations. This work reports a chemo-enzymatic approach for the comprehensive synthesis of phospholipids containing FAHFAs via sequential steps: hydratase-catalyzed hydration of unsaturated fatty acids to generate structurally diverse hydroxy fatty acids (HFAs), followed by the selective esterification of these HFAs with fatty acids mediated by secondary alcohol-specific lipase A (CALA), resulting in the formation of a series of diverse FAHFA analogs. The final synthesis is completed through carbodiimide-based coupling of FAHFAs with glycerophosphatidylcholine.

View Article and Find Full Text PDF

Immersive virtual reality (VR) provides a versatile method for investigating human time perception, because it allows the manipulation and control of relevant variables (e.g., the speed of environmental changes) that cannot be modified in the real world.

View Article and Find Full Text PDF

Synaptic vesicles can undergo several modes of exocytosis, endocytosis, and trafficking within individual synapses, and their fates may be linked to different vesicular protein compositions. Here, we mapped the intrasynaptic distribution of the synaptic vesicle proteins SV2B and SV2A in glutamatergic synapses of the hippocampus using three-dimensional electron microscopy. SV2B was almost completely absent from docked vesicles and a distinct cluster of vesicles found near the active zone.

View Article and Find Full Text PDF

Many children around the globe suffer from spider phobia. Virtual reality exposure therapy is an effective phobia treatment, but so far predominantly tailored for adults. A gamified approach utilizing gaze interaction would allow for a more child-friendly and engaging experience, and provide the possibility to foster working mechanisms of exposure therapy.

View Article and Find Full Text PDF

Angular momentum is an important physical property that plays a key role in light-matter interactions, such as spin-orbit interaction. Here, we investigate theoretically and experimentally the spin-orbit interaction between a circularly polarized optical (spin) and a transverse vortex acoustic wave (orbital) using Brillouin backscattering in a silica optical nanofiber. We specifically explore the state of polarization of Brillouin backscattering induced by the TR21 torso-radial vortex acoustic mode that carries an orbital angular momentum.

View Article and Find Full Text PDF

A sustainable and green approach was developed for the scalable synthesis of uncommon naturally occurring phospholipid species, Hemi-bis(monoacylglycero)phosphates (Hemi-BMPs) and bis(diacylglycero)phosphates (BDPs) via the phospholipase D (PLD) mediated transphosphatidylation. PLD from . showed great substrate promiscuity for both phospholipids from different biological sources, and alcohol donors with diverse regiochemistry; monoacylglycerols with diverse fatty acyl structures (C12-C22), affording 74-92 wt% yields in 2 h.

View Article and Find Full Text PDF

Silicon solar cells are approaching their theoretical efficiency limit of 29%. This limitation can be exceeded with advanced device architectures, where two or more solar cells are stacked to improve the harvesting of solar energy. In this work, we devise a tandem device with a perovskite layer conformally coated on a silicon bottom cell featuring micrometric pyramids-the industry standard-to improve its photocurrent.

View Article and Find Full Text PDF

The development of stable materials, processable on a large area, is a prerequisite for perovskite industrialization. Beyond the perovskite absorber itself, this should also guide the development of all other layers in the solar cell. In this regard, the use of NiO as a hole transport material (HTM) offers several advantages, as it can be deposited with high throughput on large areas and on flat or textured surfaces via sputtering, a well-established industrial method.

View Article and Find Full Text PDF

Impurity-vacancy centers in diamond offer a new class of robust photon sources with versatile quantum properties. While individual color centers commonly act as single-photon sources, their ensembles have been theoretically predicted to have tunable photon-emission statistics. Importantly, the particular type of excitation affects the emission properties of a color center ensemble within a diamond crystal.

View Article and Find Full Text PDF