Background: Two-dimensional (2D) specimen radiography (SR) and tomosynthesis (DBT) for breast cancer yield data that lack high-depth resolution. A volumetric specimen imager (VSI) was developed to provide full-3D and thin-slice cross-sectional visualization at a 360° view angle. The purpose of this prospective trial was to compare VSI, 2D SR, and DBT interpretation of lumpectomy margin status with the final pathologic margin status of breast lumpectomy specimens.
View Article and Find Full Text PDFDetection of breast cancer by positron emission tomography (PET) imaging with 2-(fluorine-18)-2-deoxy-D-glucose (FDG) as the tracer molecule is limited in part by both tumor dimension and metabolic activity. While some types of aggressive breast cancers are associated with a high capacity for FDG uptake, more indolent breast cancers are characterized by low FDG uptake. Moreover, detection of malignant lesions in most clinical settings requires tumor dimensions ≥10 mm.
View Article and Find Full Text PDFMitochondria exist in dynamic networks that undergo fusion and fission. Mitochondrial fusion and fission are mediated by several GTPases in the outer mitochondrial membrane, notably mitofusin-2 (Mfn-2), which promotes fusion, and dynamin-related protein (Drp-1), which promotes fission. We report that human lung cancer cell lines exhibit an imbalance of Drp-1/Mfn-2 expression, which promotes a state of mitochondrial fission.
View Article and Find Full Text PDFRationale: Pulmonary arterial hypertension (PAH) is a proliferative arteriopathy associated with glucose transporter-1 (Glut1) up-regulation and a glycolytic shift in lung metabolism. Glycolytic metabolism can be detected with the positron emission tomography (PET) tracer (18)F-fluorodeoxyglucose (FDG).
Objectives: The precise cell type in which glycolytic abnormalities occur in PAH is unknown.
Craniosynostosis is a significant disorder affecting 1 in 2500 live births worldwide. Although a large body of work has focused on dural regulation and the contributions of molecular mediators such as fibroblast growth factor, bone morphogenetic protein, and transforming growth factor β, minimal attention has been directed toward osteoclast function in cranial suture biology. Receptor activator of nuclear factor κB (RANK) is an essential mediator of osteoclastogenesis and osteoclast activation.
View Article and Find Full Text PDFRationale: The etiology of hepatopulmonary syndrome (HPS), a common complication of cirrhosis, is unknown. Inflammation and macrophage accumulation occur in HPS; however, their importance is unclear. Common bile duct ligation (CBDL) creates an accepted model of HPS, allowing us to investigate the cause of HPS.
View Article and Find Full Text PDFThe purpose of this study was to investigate the feasibility of using a 2-deoxy-d-glucose (2-DG) labeled gold nanoparticle (AuNP-2-DG) as a functionally targeted computed tomography (CT) contrast agent to obtain high-resolution metabolic and anatomic information of tumor in a single CT scan. Gold nanoparticles (AuNPs) were fabricated and were conjugated with 1-DG or 2-DG. 1-DG provides an excellent comparison since it is known to interfere with the ability of the glucose transporter to recognize the sugar moiety.
View Article and Find Full Text PDFEfficient osteogenic differentiation and bone formation from mesenchymal stem cells (MSCs) should have clinical applications in treating nonunion fracture healing. MSCs are adherent bone marrow stromal cells that can self-renew and differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. We have identified bone morphogenetic protein 9 (BMP-9) as one of the most osteogenic BMPs.
View Article and Find Full Text PDFPurpose: To study the feasibility of using 2-deoxy-D-glucose (2-DG)-labeled gold nanoparticle (AuNP-DG) as a computed tomography (CT) contrast agent with tumor targeting capability through in vitro experiments.
Procedures: Gold nanoparticles (AuNP) were fabricated and were conjugated with 2-deoxy-D-glucose. The human alveolar epithelial cancer cell line, A-549, was chosen for the in vitro cellular uptake assay.
Right ventricular hypertrophy (RVH) and RV failure contribute to morbidity and mortality in pulmonary arterial hypertension (PAH). The cause of RV dysfunction and the feasibility of therapeutically targeting the RV are uncertain. We hypothesized that RV dysfunction and electrical remodeling in RVH result, in part, from a glycolytic shift in the myocyte, caused by activation of pyruvate dehydrogenase kinase (PDK).
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
June 2008
Introduction: As pulmonary artery obstruction results in proliferation of the bronchial circulation in a variety of species, we investigated this angiogenic response using single photon emission computed tomography (SPECT) and micro-CT.
Materials And Methods: After surgical ligation of the left pulmonary artery of rats, they were imaged at 10, 20, or 40 days post-ligation. Before imaging, technetium-labeled macroaggregated albumin ((99m)Tc MAA) was injected into the aortic arch (IA) labeling the systemic circulation.