Photosynthetic reaction centers (RCs) serve as natural engines converting solar energy to chemical energy. Understanding the principles of efficient charge separation and light-induced electron transfer (ET) between the chlorophyll-type pigments might guide the synthesis for artificial photosynthetic systems. We present detailed insight into the dynamics at the atomic level using solid-state NMR techniques applied to the RCs of (HbRCs) and the purple bacterium (PbRCs).
View Article and Find Full Text PDFFlavin mononucleotide (FMN) is a ubiquitous blue-light pigment due to its ability to drive one- and two-electron transfer reactions. In both light-oxygen-voltage (LOV) domains of phototropin from the green algae , FMN is noncovalently bound. In the LOV1 cysteine-to-serine mutant (C57S), light-induced electron transfer from a nearby tryptophan occurs, and a transient spin-correlated radical pair (SCRP) is formed.
View Article and Find Full Text PDFPhotosynthetic reaction centers (RCs) are membrane proteins converting photonic excitations into electric gradients. The heliobacterial RCs (HbRCs) are assumed to be the precursors of all known RCs, making them a compelling subject for investigating structural and functional relationships. A comprehensive picture of the electronic structure of the HbRCs is still missing.
View Article and Find Full Text PDFA large number of novel phytochromes named cyanobacteriochromes (CBCRs) have been recently identified. CBCRs appear to be attractive for further in-depth studies as paradigms for phytochromes because of their related photochemistry, but simpler domain architecture. Elucidating the mechanisms of spectral tuning for the bilin chromophore down to the molecular/atomic level is a prerequisite to design fine-tuned photoswitches for optogenetics.
View Article and Find Full Text PDFHyperpolarization via the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect can be detected in frozen solutions of electron transfer proteins generating a radical-pair upon illumination. The effect has been observed in various natural photosynthetic reaction centers and in light-oxygen-voltage (LOV) sensing domains incorporating a flavin mononucleotide (FMN) as chromophore. In LOV domains, where a highly conserved cysteine is mutated to a flavin to interrupt its natural photochemistry, a radical-pair is generated by electron transfer from a nearby tryptophan to the photoexcited triplet state of FMN.
View Article and Find Full Text PDFThe recently discovered metagenomic-derived polyester hydrolase PHL7 is able to efficiently degrade amorphous polyethylene terephthalate (PET) in post-consumer plastic waste. We present the cocrystal structure of this hydrolase with its hydrolysis product terephthalic acid and elucidate the influence of 17 single mutations on the PET-hydrolytic activity and thermal stability of PHL7. The substrate-binding mode of terephthalic acid is similar to that of the thermophilic polyester hydrolase LCC and deviates from the mesophilic IsPETase.
View Article and Find Full Text PDFWe investigate collision-induced dissociation (CID) of [MoX] (X = Cl, Br, I) and the reactivity of fragment ions of these precursors with background gases. Ion mobility measurements and theoretical calculations provide structural information for some of the observed ions. Sequential losses of MoX units dominate the dissociation pathways of [MoCl].
View Article and Find Full Text PDFThe detection and characterization of trapped water molecules in chemical entities and biomacromolecules remains a challenging task for solid materials. We herein present proton-detected solid-state Nuclear Magnetic Resonance (NMR) experiments at 100 kHz magic-angle spinning and at high static magnetic-field strengths (28.2 T) enabling the detection of a single water molecule fixed in the calix[4]arene cavity of a lanthanide complex by a combination of three types of non-covalent interactions.
View Article and Find Full Text PDFApplications in catalysis, adsorption and separation require high surface areas as provided by mesoporous materials. Particularly attractive is the class of silica-based mesoporous glasses, which are mechanically and chemically very stable and post-synthetically modifiable allowing specific surface properties to be introduced. One of the catalytically relevant moieties is the sulfonic acid group.
View Article and Find Full Text PDFCyanobacteriochromes (CBCRs) are phytochrome-related photosensory proteins that play an essential role in regulating phototaxis, chromatic acclimation, and cell aggregation in cyanobacteria. Here, we apply solid-state NMR spectroscopy to the red/green GAF2 domain of the CBCR AnPixJ assembled in vitro with a uniformly C- and N-labeled bilin chromophore, tracking changes in electronic structure, geometry, and structural heterogeneity of the chromophore as well as intimate contacts between the chromophore and protein residues in the photocycle. Our data confirm that the bilin ring D is strongly twisted with respect to the B-C plane in both dark and photoproduct states.
View Article and Find Full Text PDFA detailed investigation of the energy levels of perylene-3,4,9,10-tetracarboxylic tetraethylester as a representative compound for the whole family of perylene esters was performed. It was revealed via electrochemical measurements that one oxidation and two reductions take place. The bandgaps determined via the electrochemical approach are in good agreement with the optical bandgap obtained from the absorption spectra via a Tauc plot.
View Article and Find Full Text PDFChannelrhodopsins are photosensitive proteins that trigger flagella motion in single-cell algae and have been successfully utilized in optogenetic applications. In optogenetics, light is used to activate neural cells in living organisms, which can be achieved by exploiting the ion channel signaling of channelrhodopsins. Tailoring channelrhodopsins for such applications includes the tuning of the absorption maximum.
View Article and Find Full Text PDFCorrection for 'Histidine protonation controls structural heterogeneity in the cyanobacteriochrome AnPixJg2' by Aditya G. Rao et al., Phys.
View Article and Find Full Text PDFCyanobacteriochromes are compact and spectrally diverse photoreceptor proteins that bind a linear tetrapyrrole as a chromophore. They show photochromicity by having two stable states that can be interconverted by the photoisomerization of the chromophore. These photochemical properties make them an attractive target for biotechnological applications.
View Article and Find Full Text PDFCyanobacteriochromes (CBCRs) are photoreceptors of the phytochrome superfamily showing remarkable variability in the wavelengths of the first electronic transition-sometimes denoted as Q band-compared to canonical phytochromes. Both classes carry the same cofactor, a bilin, but the molecular basis for the wide variation of their absorption properties is still a matter of debate. The interaction between the cofactor and the surrounding protein moiety has been proposed as a possible tuning factor.
View Article and Find Full Text PDFThis perspective article highlights the challenges in the theoretical description of photoreceptor proteins using multiscale modeling, as discussed at the CECAM workshop in Tel Aviv, Israel. The participants have identified grand challenges and discussed the development of new tools to address them. Recent progress in understanding representative proteins such as green fluorescent protein, photoactive yellow protein, phytochrome, and rhodopsin is presented, along with methodological developments.
View Article and Find Full Text PDFPhytochromes are a diverse family of bilin-binding photoreceptors that regulate a wide range of physiological processes. Their photochemical properties make them attractive for applications in optogenetics and superresolution microscopy. Phytochromes undergo reversible photoconversion triggered by the ⇄ photoisomerization about the double bond in the bilin chromophore.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2020
The three-dimensional (3D) crystal structures of the GAF3 domain of cyanobacteriochrome Slr1393 ( PCC6803) carrying a phycocyanobilin chromophore could be solved in both 15- dark-adapted state, Pr, λ = 649 nm, and 15- photoproduct, Pg, λ = 536 nm (resolution, 1.6 and 1.86 Å, respectively).
View Article and Find Full Text PDFCyanobacteriochromes are compact and spectrally diverse photoreceptor proteins that are promising candidates for biotechnological applications. Computational studies can contribute to an understanding at a molecular level of their wide spectral tuning and diversity. In this contribution, we benchmark methods to model a 110 nm shift in the UV/Vis absorption spectrum from a red- to a green-absorbing form of the cyanobacteriochrome Slr1393g3.
View Article and Find Full Text PDFThe origin of the spectral shift from a red- to a green-absorbing form in a cyanobacteriochrome, Slr1393g3, was identified by combined quantum mechanics/molecular mechanics simulations. This protein, related to classical phytochromes, carries the open-chain tetrapyrrole chromophore phycocyanobilin. Our calculations reveal that the effective conjugation length in the chromophore becomes shorter upon conversion from the red to the green form.
View Article and Find Full Text PDFIn this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible we used the multireference configuration interaction (MRCI) method as a reference for various flavors of multireference perturbation theory to second order.
View Article and Find Full Text PDFUnderstanding electronic energy transfer (EET) is an important ingredient in the development of artificial photosynthetic systems and photovoltaic technologies. Although EET is at the heart of these applications and crucially influences their light-harvesting efficiency, the nature of EET over short distances for covalently bound donor and acceptor units is often not well understood. Here we investigate EET in an orthogonal molecular dyad (BODT4), in which simple models fail to explain the very origin of EET.
View Article and Find Full Text PDFPhotochromism is a light-induced molecular process that is likely to find its way into future optoelectronic devices. In further optimization of photochromic materials, light-induced conversion efficiencies as well as reaction times can usually only be determined once a new molecule was synthesized. Here we use nonadiabatic ab initio molecular dynamics to study the electrocyclic reaction of diarylethenes, comparing normal- and inverse-type systems.
View Article and Find Full Text PDFBilaterally extended perylenes were synthesized, characterized, and used to create organic light-emitting devices. A detailed investigation of the electronic and optical properties, and a comparison of perylene derivatives and compounds with unilaterally and bilaterally extended aromatic cores, reveal unexpected changes of the absorption spectrum, which are in agreement with simulations based on DFT.
View Article and Find Full Text PDF