In this work, we present the monolithic integration of a TiN nanohole array and a Ge photodetector towards a CMOS compatible fabrication of a refractive index sensor in a 200 mm wafer silicon technology. We developed a technology process that enables fabrication with high yields of around 90%. Ge photodetectors with a Ge layer thickness of 450 nm and an area of 1600 µm (40 µm x 40 µm) show dark current densities of around 129 mA/cm and responsivities of 0.
View Article and Find Full Text PDFThe graphene adjustable-barriers phototransistor is an attractive novel device for potential high speed and high responsivity dual-band photodetection. In this device, graphene is embedded between the semiconductors silicon and germanium. Both n-type and p-type Schottky contacts between graphene and the semiconductors are required for this device.
View Article and Find Full Text PDFBlooming and pruning is one of the most important developmental mechanisms of the biological brain in the first years of life, enabling it to adapt its network structure to the demands of the environment. The mechanism is thought to be fundamental for the development of cognitive skills. Inspired by this, Chialvo and Bak proposed in 1999 a learning scheme that learns from mistakes by eliminating from the initial surplus of synaptic connections those that lead to an undesirable outcome.
View Article and Find Full Text PDFWe characterize TiN/Ti/HfO/TiN memristive devices for neuromorphic computing. We analyze different features that allow the devices to mimic biological synapses and present the models to reproduce analytically some of the data measured. In particular, we have measured the spike timing dependent plasticity behavior in our devices and later on we have modeled it.
View Article and Find Full Text PDFFor the fabrication of modern graphene devices, uniform growth of high-quality monolayer graphene on wafer scale is important. This work reports on the growth of large-scale graphene on semiconducting 8 inch Ge(110)/Si wafers by chemical vapor deposition and a DFT analysis of the growth process. Good graphene quality is indicated by the small FWHM (32 cm) of the Raman 2D band, low intensity ratio of the Raman D and G bands (0.
View Article and Find Full Text PDFTitanium nitride (TiN) is a complementary metal-oxide-semiconductor (CMOS) compatible material with large potential for the fabrication of plasmonic structures suited for device integration. However, the comparatively large optical losses can be detrimental for application. This work reports a CMOS compatible TiN nanohole array (NHA) on top of a multilayer stack for potential use in integrated refractive index sensing with high sensitivities at wavelengths between 800 and 1500 nm.
View Article and Find Full Text PDFThe growth of hexagonal boron nitride (hBN) on epitaxial Ge(001)/Si substrates via high-vacuum chemical vapor deposition from borazine is investigated for the first time in a systematic manner. The influences of the process pressure and growth temperature in the range of 10-10 mbar and 900-980 °C, respectively, are evaluated with respect to morphology, growth rate, and crystalline quality of the hBN films. At 900 °C, nanocrystalline hBN films with a lateral crystallite size of ~2-3 nm are obtained and confirmed by high-resolution transmission electron microscopy images.
View Article and Find Full Text PDFOne of the objectives fostered in medical science is the so-called precision medicine, which requires the analysis of a large amount of survival data from patients to deeply understand treatment options. Tools like machine learning (ML) and deep neural networks are becoming a de-facto standard. Nowadays, computing facilities based on the Von Neumann architecture are devoted to these tasks, yet rapidly hitting a bottleneck in performance and energy efficiency.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
A graphene-based three-terminal barristor device was proposed to overcome the low on/off ratios and insufficient current saturation of conventional graphene field-effect transistors. In this study, we fabricated and analyzed a novel graphene-based transistor, which resembles the structure of the barristor but uses a different operating condition. This new device, termed graphene adjustable-barriers transistor (GABT), utilizes a semiconductor-based gate rather than a metal-insulator gate structure to modulate the device currents.
View Article and Find Full Text PDFDielectrophoresis (DEP) is an AC electrokinetic effect mainly used to manipulate cells. Smaller particles, like virions, antibodies, enzymes, and even dye molecules can be immobilized by DEP as well. In principle, it was shown that enzymes are active after immobilization by DEP, but no quantification of the retained activity was reported so far.
View Article and Find Full Text PDFAn AlO/ZnO heterojunction was grown on a Si single crystal substrate by subsequent thermal and plasma-assisted atomic layer deposition (ALD) . The band offsets of the heterointerface were then studied by consecutive removal of the layers by argon sputtering, followed by X-ray photoelectron spectroscopy. The valence band maximum and conduction band minimum of AlO are found to be 1.
View Article and Find Full Text PDFThe use of alternating current (AC) electrokinetic forces, like dielectrophoresis and AC electroosmosis, as a simple and fast method to immobilize sub-micrometer objects onto nanoelectrode arrays is presented. Due to its medical relevance, the influenza virus is chosen as a model organism. One of the outstanding features is that the immobilization of viral material to the electrodes can be achieved permanently, allowing subsequent handling independently from the electrical setup.
View Article and Find Full Text PDFPersonalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal.
View Article and Find Full Text PDFThis study aims at developing a miniaturized CMOS integrated silicon-based microfluidic system, compatible with a standard CMOS process, to enable the characterization, and separation of live and dead yeast cells (as model bio-particle organisms) in a cell mixture using the DEP technique. DEP offers excellent benefits in terms of cost, operational power, and especially easy electrode integration with the CMOS architecture, and requiring label-free sample preparation. This can increase the likeliness of using DEP in practical settings.
View Article and Find Full Text PDFChronic Obstructive Pulmonary Disease (COPD) is a life-threatening lung disease, affecting millions of people worldwide. Implementation of Machine Learning (ML) techniques is crucial for the effective management of COPD in home-care environments. However, shortcomings of cloud-based ML tools in terms of data safety and energy efficiency limit their integration with low-power medical devices.
View Article and Find Full Text PDFBiological neural networks outperform current computer technology in terms of power consumption and computing speed while performing associative tasks, such as pattern recognition. The analogue and massive parallel in-memory computing in biology differs strongly from conventional transistor electronics that rely on the von Neumann architecture. Therefore, novel bio-inspired computing architectures have been attracting a lot of attention in the field of neuromorphic computing.
View Article and Find Full Text PDFThis paper presents a dielectrophoretic system for the immobilization and separation of live and dead cells. Dielectrophoresis (DEP) is a promising and efficient investigation technique for the development of novel lab-on-a-chip devices, which characterizes cells or particles based on their intrinsic and physical properties. Using this method, specific cells can be isolated from their medium carrier or the mixture of cell suspensions (e.
View Article and Find Full Text PDFThe application of inhomogeneous AC electric fields for molecular immobilization is a very fast and simple method that does not require any adaptions to the molecule's functional groups or charges. Here, the method is applied to a completely new category of molecules: small organic fluorescence dyes, whose dimensions amount to only 1 nm or even less. The presented setup and the electric field parameters used allow immobilization of dye molecules on the whole electrode surface as opposed to pure dielectrophoretic applications, where molecules are attracted only to regions of high electric field gradients, i.
View Article and Find Full Text PDFThe potential in a synaptic simulation for neuromorphic computation has revived the research interest of resistive random access memory (RRAM). However, novel applications require reliable multilevel resistive switching (RS), which still represents a challenge. We demonstrate in this work the achievement of reliable HfO-based RRAM devices for synaptic simulation by performing the Al doping and the postdeposition annealing (PDA).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2020
The oxidation behavior of Ge(001) and Ge(110) surfaces underneath the chemical vapor deposition (CVD)-grown graphene films has been investigated experimentally and interpreted on the basis of ab initio calculations. Freshly grown samples were exposed to air for more than 7 months and periodically monitored by X-ray photoelectron spectroscopy, scanning electron microscopy, and Raman spectroscopy. The oxidation of Ge(110) started with incubation time of several days, during which the oxidation rate was supposedly exponential.
View Article and Find Full Text PDFDielectrophoresis (DEP) is a nondestructive and noninvasive method which is favorable for point-of-care medical diagnostic tests. This technique exhibits prominent relevance in a wide range of medical applications wherein the miniaturized platform for manipulation (immobilization, separation or rotation), and detection of biological particles (cells or molecules) can be conducted. DEP can be performed using advanced planar technologies, such as complementary metal-oxide-semiconductor (CMOS) through interdigitated capacitive biosensors.
View Article and Find Full Text PDFA graphene/silicon junction with rectifying behaviour and remarkable photo-response was fabricated by transferring a graphene monolayer on a pillar-patterned Si substrate. The device forms a 0.11 eV Schottky barrier with 2.
View Article and Find Full Text PDFChronic Obstructive Pulmonary Disease (COPD) is a life-threatening lung disease affecting millions of people worldwide. Although the majority of patients with objective COPD go undiagnosed until the late stages of their disease, recent studies suggest that the regular screening of sputum viscosity could provide important information on the disease detection. Since the viscosity of sputum is mainly defined by its mucin⁻protein and water contents, dielectric biosensors can be used for detection of viscosity variations by screening changes in sputum's contents.
View Article and Find Full Text PDFThe viscosity variation of sputum is a common symptom of the progression of Chronic Obstructive Pulmonary Disease (COPD). Since the hydration of the sputum defines its viscosity level, dielectric sensors could be used for the characterization of sputum samples collected from patients for early diagnosis of COPD. In this work, a CMOS-based dielectric sensor for the real-time monitoring of sputum viscosity was designed and fabricated.
View Article and Find Full Text PDF