Publications by authors named "Christian Waltermann"

In this research work, we show the successful inscription of fiber Bragg gratings into carbon-coated pure silica as well as germanium-doped glass fibers by applying the pulsed laser point-by-point manufacturing technique. First, the parameters used for the Ti:sapphire femtosecond laser process are demonstrated. Without removing the polymeric carbon coating, destruction-free formation of highly reflective Bragg gratings is performed with selected types of hermetically enclosed fibers.

View Article and Find Full Text PDF
Article Synopsis
  • - The text discusses the arrangement of point-by-point femtosecond laser processed fiber Bragg gratings on the edge of a single-mode optical fiber to measure the central mode field position.
  • - These gratings use their varying amplitudes to determine the position and local curvature of the fiber core.
  • - An analytical method is proposed for this detection, followed by experimental validation to confirm its effectiveness.
View Article and Find Full Text PDF

Femtosecond laser pulses were used for the direct point-by-point inscription of waveguides into the cladding of standard single-mode fibers. Homogeneous S-shaped waveguides have been processed as a bundle of overlapping lines without damaging the surrounding material. Within these structures, FBGs have been successfully inscribed and characterized.

View Article and Find Full Text PDF

Femtosecond laser pulses were used for the direct point-by-point inscription of phase-shifted fiber Bragg gratings (FBGs) in a single fabrication step without postprocessing. An electro-optic amplitude modulator is used in the setup to generate a defined delay between two identical laser pulse trains for the grating inscription. The grating structure with a central phase shift is formed by focusing the modulated laser pulses into the core of a fiber, while the fiber is translated with a constant velocity.

View Article and Find Full Text PDF

Background: Cells interact with their environment and they have to react adequately to internal and external changes such changes in nutrient composition, physical properties like temperature or osmolarity and other stresses. More specifically, they must be able to evaluate whether the external change is significant or just in the range of noise. Based on multiple external parameters they have to compute an optimal response.

View Article and Find Full Text PDF

A complex signalling network governs the response of Saccharomyces cerevisiae to an array of environmental stimuli and stresses. In the present article, we provide an overview of the main signalling system and discuss the mechanisms by which yeast integrates and separates signals from these sources. We apply our classification scheme to a simple semi-quantitative model of the HOG (high-osmolarity glycerol)/FG (filamentous growth)/PH (pheromone) MAPK (mitogen-activated protein kinase) signalling network by perturbing its signal integration mechanisms under combinatorial stimuli of osmotic stress, starvation and pheromone exposure in silico.

View Article and Find Full Text PDF

Boolean modeling has been successfully applied to the budding yeast cell cycle to demonstrate that both its structure and its timing are robustly designed. However, from these studies few conclusions can be drawn how robust the cell cycle arrest upon osmotic stress and pheromone exposure might be. We therefore implement a compact Boolean model of the S.

View Article and Find Full Text PDF

Cellular signalling networks integrate environmental stimuli with the information on cellular status. These networks must be robust against stochastic fluctuations in stimuli as well as in the amounts of signalling components. Here, we challenge the yeast HOG signal-transduction pathway with systematic perturbations in components' expression levels under various external conditions in search for nodes of fragility.

View Article and Find Full Text PDF

In mammals, the circadian pacemaker, which controls daily rhythms, is located in the suprachiasmatic nucleus (SCN). Circadian oscillations are generated in individual SCN neurons by a molecular regulatory network. Cells oscillate with periods ranging from 20 to 28 h, but at the tissue level, SCN neurons display significant synchrony, suggesting a robust intercellular coupling in which neurotransmitters are assumed to play a crucial role.

View Article and Find Full Text PDF