Terrorism is a major problem worldwide, causing thousands of fatalities and billions of dollars in damage every year. To address this threat, we propose a novel feature representation method and evaluate machine learning models that learn from localized news data in order to predict whether a terrorist attack will occur on a given calendar date and in a given state. The best model (a Random Forest aided by a novel variable-length moving average method) achieved area under the receiver operating characteristic (AUROC) of ≥ 0.
View Article and Find Full Text PDF