One of the early changes upon tuber induction is the switch from apoplastic to symplastic unloading. Whether and how this change in unloading mode contributes to sink strength has remained unclear. In addition, developing tubers also change from energy to storage-based sucrose metabolism.
View Article and Find Full Text PDFResearch on diploid hybrid potato has made fast advances in recent years. In this review we give an overview of the most recent and relevant research outcomes. We define different components needed for a complete hybrid program: inbred line development, hybrid evaluation, cropping systems and variety registration.
View Article and Find Full Text PDFBackground: A quantitative trait locus (QTL) is a genomic region that correlates with a phenotype. Most of the experimental information about QTL mapping studies is described in tables of scientific publications. Traditional text mining techniques aim to extract information from unstructured text rather than from tables.
View Article and Find Full Text PDFBackground: In flowering plants it has been shown that de novo genome assemblies of different species and genera show a significant drop in the proportion of alignable sequence. Within a plant species, however, it is assumed that different haplotypes of the same chromosome align well. In this paper we have compared three de novo assemblies of potato chromosome 5 and report on the sequence variation and the proportion of sequence that can be aligned.
View Article and Find Full Text PDFOne of the most powerful technologies in unraveling the organization of a eukaryotic plant genome is high-resolution Fluorescent in situ hybridization of repeats and single copy DNA sequences on pachytene chromosomes. This technology allows the integration of physical mapping information with chromosomal positions, including centromeres, telomeres, nucleolar-organizing region, and euchromatin and heterochromatin. In this report, we established chromosomal positions of different repeat fractions of the potato genomic DNA (Cot100, Cot500 and Cot1000) on the chromosomes.
View Article and Find Full Text PDFThe PIN family of trans-membrane proteins mediates auxin efflux throughout the plant and during various phases of plant development. In Arabidopsis thaliana, the PIN family comprised of 8 members, divided into "short" and "long" PINs according to the length of the hydrophilic domain of the protein. Based on sequence homology using the recently published potato genome sequence (Solanum tuberosum group Phureja) we identified ten annotated potato StPIN genes.
View Article and Find Full Text PDFThe genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker-based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci.
View Article and Find Full Text PDFGA biosynthesis and catabolism has been shown to play an important role in regulating tuberization in potato. Active GAs are inactivated in the stolon tips shortly after induction to tuberization. Overexpression of a GA inactivation gene results in an earlier tuberization phenotype, while reducing expression of the same gene results in delayed tuberization.
View Article and Find Full Text PDFPotato (Solanum tuberosum L.) originates from the Andes and evolved short-day-dependent tuber formation as a vegetative propagation strategy. Here we describe the identification of a central regulator underlying a major-effect quantitative trait locus for plant maturity and initiation of tuber development.
View Article and Find Full Text PDFSeveral hormones have been studied for their effect on tuber initiation and development. Until recently, the hormone with the most prominent role in tuber initiation was attributed to GA. Genes involved in GA degradation do exhibit an upregulated profile during early stages of tuber development, leading to a rapid decrease of active GA content, thereby facilitating stolon-tip swelling.
View Article and Find Full Text PDFVarious transcriptional networks and plant hormones have been implicated in controlling different aspects of potato tuber formation. Due to its broad impact on many plant developmental processes, a role for auxin in tuber initiation has been suggested but never fully resolved. Here, auxin concentrations were measured throughout the plant prior to and during the process of tuber formation.
View Article and Find Full Text PDFIn tomato, carotenoids are important with regard to major breeding traits such as fruit colour and human health. The enzyme phytoene synthase (PSY1) directs metabolic flux towards carotenoid synthesis. Through TILLING (Targeting Induced Local Lesions IN Genomes), we have identified two point mutations in the Psy1 gene.
View Article and Find Full Text PDFBMC Plant Biol
February 2012
Background: With the completion of genome sequences belonging to some of the major crop plants, new challenges arise to utilize this data for crop improvement and increased food security. The field of genetical genomics has the potential to identify genes displaying heritable differential expression associated to important phenotypic traits. Here we describe the identification of expression QTLs (eQTLs) in two different potato tissues of a segregating potato population and query the potato genome sequence to differentiate between cis- and trans-acting eQTLs in relation to gene subfunctionalization.
View Article and Find Full Text PDFRecent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry.
View Article and Find Full Text PDFIn the post-genomic era, high-throughput technologies have led to data collection in fields like transcriptomics, metabolomics and proteomics and, as a result, large amounts of data have become available. However, the integration of these ~omics data sets in relation to phenotypic traits is still problematic in order to advance crop breeding. We have obtained population-wide gene expression and metabolite (LC-MS) data from tubers of a diploid potato population and present a novel approach to study the various ~omics datasets to allow the construction of networks integrating gene expression, metabolites and phenotypic traits.
View Article and Find Full Text PDFPotato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression.
View Article and Find Full Text PDFBackground: Utilization of the natural genetic variation in traditional breeding programs remains a major challenge in crop plants. The identification of candidate genes underlying, or associated with, phenotypic trait QTLs is desired for effective marker assisted breeding. With the advent of high throughput -omics technologies, screening of entire populations for association of gene expression with targeted traits is becoming feasible but remains costly.
View Article and Find Full Text PDFBackground: The establishment of mutant populations together with the strategies for targeted mutation detection has been applied successfully to a large number of organisms including many species in the plant kingdom. Considerable efforts have been invested into research on tomato as a model for berry-fruit plants. With the progress of the tomato sequencing project, reverse genetics becomes an obvious and achievable goal.
View Article and Find Full Text PDFThe increasing amount of available expressed gene sequence data makes whole-transcriptome analysis of certain crop species possible. Potato currently has the second largest number of publicly available expressed sequence tag (EST) sequences among the Solanaceae. Most of these ESTs, plus other proprietary sequences, were combined and used to generate a unigene assembly.
View Article and Find Full Text PDFThe formation and growth of a potato (Solanum tuberosum) tuber is a complex process regulated by different environmental signals and plant hormones. In particular, the action of gibberellins (GAs) has been implicated in different aspects of potato tuber formation. Here we report on the isolation and functional analysis of a potato GA 2-oxidase gene (StGA2ox1) and its role in tuber formation.
View Article and Find Full Text PDFA combination of cDNA-amplified fragment length polymorphism (AFLP) and bulked segregant analysis (BSA) was used to identify genes co-segregating with earliness of tuberization in a diploid potato population. This approach identified 37 transcript-derived fragments with a polymorphic segregation pattern between early and late tuberizing bulks. Most of the identified transcripts mapped to chromosomes 5 (19 markers) and 12 (eight markers) of the paternal map.
View Article and Find Full Text PDFEnzymatic discoloration (ED) of potato tubers was investigated in an attempt to unravel the underlying genetic factors. Both enzyme and substrate concentration have been reported to influence the degree of discoloration and as such this trait can be regarded as polygenic. The diploid mapping population C x E, consisting of 249 individuals, was assayed for the degree of ED and levels of chlorogenic acid and tyrosine.
View Article and Find Full Text PDFPotato tuber development has proven to be a valuable model system for studying underground sink organ formation. Research on this topic has led to the identification of many genes involved in this complex process and has aided in the unravelling of the mechanisms underlying starch synthesis. However, less attention has been paid to the biochemical pathways of other important metabolites or to the changing metabolic fluxes occurring during potato tuber development.
View Article and Find Full Text PDFPlant organ size shows remarkable uniformity within species indicating strong endogenous control. We have identified a plant growth regulatory gene, functionally and structurally homologous to human EBP1. Plant EBP1 levels are tightly regulated; gene expression is highest in developing organs and correlates with genes involved in ribosome biogenesis and function.
View Article and Find Full Text PDFNon-specific lipid-transfer proteins (nsLTPs) are capable of binding lipid compounds in plant tissues and are coded by the nsLTP genes. Here, we present the analysis of expression of a family of potato (Solanum tuberosum) nsLTP genes that express throughout the developing plant in a highly tissue-specific manner. Three transcript-derived fragments were isolated using an amplified restriction fragment polymorphism-derived technique for RNA fingerprinting that show homology to plant nsLTP genes.
View Article and Find Full Text PDF