Primary cilia are hair-like structures found on nearly all mammalian cell types, including cells in the developing and adult brain. A diverse set of receptors and signaling proteins localize within cilia to regulate many physiological and developmental pathways, including the Hedgehog (Hh) pathway. Defects in cilia structure, protein localization, and function lead to genetic disorders called ciliopathies, which present with various clinical features that include several neurodevelopmental phenotypes and hyperphagia-associated obesity.
View Article and Find Full Text PDFObjective: The central melanocortin system is essential for the regulation of food intake and body weight. Agouti-related protein (AgRP) is the sole orexigenic component of the central melanocortin system and is conserved across mammalian species. AgRP is currently known to be expressed exclusively in the mediobasal hypothalamus, and hypothalamic AgRP-expressing neurons are essential for feeding.
View Article and Find Full Text PDFCilia are near ubiquitous small, cellular appendages critical for cell-to-cell communication. As such, they are involved in diverse developmental and homeostatic processes, including energy homeostasis. ARL13B is a regulatory GTPase highly enriched in cilia.
View Article and Find Full Text PDFPrimary cilia are cellular appendages critical for diverse types of Signaling. They are found on most cell types, including cells throughout the CNS. Cilia preferentially localize certain G-protein-coupled receptors (GPCRs) and are critical for mediating the signaling of these receptors.
View Article and Find Full Text PDFThe G protein-coupled receptor melanocortin-4 receptor (MC4R) and its associated protein melanocortin receptor-associated protein 2 (MRAP2) are essential for the regulation of food intake and body weight in humans. MC4R localizes and functions at the neuronal primary cilium, a microtubule-based organelle that senses and relays extracellular signals. Here, we demonstrate that MRAP2 is critical for the weight-regulating function of MC4R neurons and the ciliary localization of MC4R.
View Article and Find Full Text PDFCirculating corticosteroids orchestrate stress adaptation, including inhibition of inflammation. While pathways governing corticosteroid biosynthesis and intracellular signaling are well understood, less is known about mechanisms controlling plasma corticosteroid transport. Here, we show that hepatocyte KLF15 (Kruppel-like factor 15) controls plasma corticosteroid transport and inflammatory responses through direct transcriptional activation of , which encodes corticosteroid-binding globulin (CBG).
View Article and Find Full Text PDFThe melanocortin 4 receptor (MC4R) plays a critical role in the long-term regulation of energy homeostasis, and mutations in the MC4R are the most common cause of monogenic obesity. However, the precise molecular and cellular mechanisms underlying the maintenance of energy balance within MC4R-expressing neurons are unknown. We recently reported that the MC4R localizes to the primary cilium, a cellular organelle that allows for partitioning of incoming cellular signals, raising the question of whether the MC4R functions in this organelle.
View Article and Find Full Text PDFBackground: Three-dimensional optical (3DO) body scanning has been proposed for automatic anthropometry. However, conventional measurements fail to capture detailed body shape. More sophisticated shape features could better indicate health status.
View Article and Find Full Text PDFGenome wide association studies (GWAS) in obesity have identified a large number of noncoding loci located near genes expressed in the central nervous system. However, due to the difficulties in isolating and characterizing specific neuronal subpopulations, few obesity-associated SNPs have been functionally characterized. Leptin responsive neurons in the hypothalamus are essential in controlling energy homeostasis and body weight.
View Article and Find Full Text PDFA wide range of human diseases result from haploinsufficiency, where the function of one of the two gene copies is lost. Here, we targeted the remaining functional copy of a haploinsufficient gene using CRISPR-mediated activation (CRISPRa) in and heterozygous mouse models to rescue their obesity phenotype. Transgenic-based CRISPRa targeting of the promoter or its distant hypothalamic enhancer up-regulated its expression from the endogenous functional allele in a tissue-specific manner, rescuing the obesity phenotype in heterozygous mice.
View Article and Find Full Text PDFMost monogenic cases of obesity in humans have been linked to mutations in genes encoding members of the leptin-melanocortin pathway. Specifically, mutations in MC4R, the melanocortin-4 receptor gene, account for 3-5% of all severe obesity cases in humans. Recently, ADCY3 (adenylyl cyclase 3) gene mutations have been implicated in obesity.
View Article and Find Full Text PDFNeurons expressing agouti-related protein (AgRP) are essential for feeding. The majority of these neurons are located outside the blood-brain barrier (BBB), allowing them to directly sense circulating metabolic factors. Here, we show that, in adult mice, AgRP neurons outside the BBB (AgRP) were rapidly ablated by peripheral administration of monosodium glutamate (MSG), whereas AgRP neurons inside the BBB and most proopiomelanocortin (POMC) neurons were spared.
View Article and Find Full Text PDFThe ciliopathies Bardet-Biedl syndrome and Alström syndrome cause obesity. How ciliary dysfunction leads to obesity has remained mysterious, partly because of a lack of understanding of the physiological roles of primary cilia in the organs and pathways involved in the regulation of metabolism and energy homeostasis. Historically, the study of rare monogenetic disorders that present with obesity has informed our molecular understanding of the mechanisms involved in nonsyndromic forms of obesity.
View Article and Find Full Text PDFObjective: Elevated levels of serum leptin are associated with increased adiposity and production of pro-inflammatory cytokines. Both cytokines and body adiposity have been shown to predict cardiovascular events and mortality. The primary objective of the present study is to explore the associations between serum leptin and all-cause mortality and mortality from cardiovascular disease (CVD) over a span of 10 years, controlling for body adiposity and proinflammatory cytokines.
View Article and Find Full Text PDFCommon genetic variants 3' of MC4R within two large linkage disequilibrium (LD) blocks spanning 288 kb have been associated with common and rare forms of obesity. This large association region has not been refined and the relevant DNA segments within the association region have not been identified. In this study, we investigated whether common variants in the MC4R gene region were associated with adiposity-related traits in a biracial population-based study.
View Article and Find Full Text PDFObjective: Hyperphagia is a central feature of inherited disorders (e.g., Prader-Willi Syndrome) in which obesity is a primary phenotypic component.
View Article and Find Full Text PDFHaploinsufficiency of the single-minded homology 1 (SIM1) gene in humans and mice leads to severe obesity, suggesting that altered expression of SIM1, by way of regulatory elements such as enhancers, could predispose individuals to obesity. Here, we identified transcriptional enhancers that could regulate SIM1, using comparative genomics coupled with zebrafish and mouse transgenic enhancer assays. Owing to the dual role of Sim1 in hypothalamic development and in adult energy homeostasis, the enhancer activity of these sequences was annotated from embryonic to adult age.
View Article and Find Full Text PDFMost of our understanding of G protein-coupled receptor (GPCR) activation has been focused on the direct interaction between diffusible ligands and their seven-transmembrane domains. However, a number of these receptors depend on their extracellular N-terminal domain for ligand recognition and activation. To dissect the molecular interactions underlying both modes of activation at a single receptor, we used the unique properties of the melanocortin-4 receptor (MC4R), a GPCR that shows constitutive activity maintained by its N-terminal domain and is physiologically activated by the peptide α-melanocyte stimulating hormone (αMSH).
View Article and Find Full Text PDFHaplo-insufficiency of the bHLH (basic helix-loop-helix) transcription factor single-minded 1 (SIM1) causes severe obesity in mice and humans. We hypothesized that common genetic variations in/near SIM1 could exert more subtle effects on its function and associate with human adiposity. First, SIM1 coding regions were sequenced in severely obese subjects, and two common nonsynonymous single-nucleotide polymorphisms (nsSNPs) in complete linkage disequilibrium (LD) were identified: Pro352Thr (rs3734354) and Ala371Val (rs3734355).
View Article and Find Full Text PDFBackground: Heterozygous mutations in melanocortin-4 receptor (MC4R) are the most frequent genetic cause of obesity. Bariatric surgery is a successful treatment for severe obesity. The mechanisms of weight loss after bariatric surgery are not well understood.
View Article and Find Full Text PDFThe melanocortin 4 receptor (MC4R) is a G-protein-coupled receptor (GPCR) and a key molecule in the regulation of energy homeostasis. At least 159 substitutions in the coding region of human MC4R (hMC4R) have been described experimentally; over 80 of those occur naturally, and many have been implicated in obesity. However, assessment of the presumably functionally essential residues remains incomplete.
View Article and Find Full Text PDFThe extent to which common variants contribute to common phenotypes and disease in humans has important consequences for the future of medical genomics. Two reports have recently clarified this issue for one of the most pressing public health concerns, obesity. These large and comprehensive genome-wide association studies find that common variants within at least 11 genes are associated with obesity.
View Article and Find Full Text PDFObjective: X-linked nephrogenic diabetes insipidus (XNDI), caused by mutations in the V2 vasopressin receptor (V2R), is clinically distinguished from central diabetes insipidus (CDI) by elevated serum vasopressin (AVP) levels and unresponsiveness to 1-desamino-8-d-arginine vasopressin (DDAVP). We report two infants with XNDI, and present the characterization and functional rescue of a novel V2R mutation.
Patients: Two male infants presented with poor growth and hypernatraemia.
Functionally significant heterozygous mutations in the Melanocortin-4 receptor (MC4R) have been implicated in 2.5% of early onset obesity cases in European cohorts. The role of mutations in this gene in severely obese adults, particularly in smaller North American patient cohorts, has been less convincing.
View Article and Find Full Text PDF