Org Process Res Dev
November 2024
The development of sustainable trifluoromethylations of enamides is of great interest to the pharmaceutical industry. Herein, we demonstrate a sustainable direct electrochemical trifluoromethylation method in a microflow cell, using Langlois reagent, without the need for a supporting electrolyte, oxidants, or any additive under mild conditions. This method can be applied to various substrates with a yield of up to 84%.
View Article and Find Full Text PDFHerein, we describe the continuous flow synthesis and in-line extraction of ,-dimethyltryptamine (DMT) and several of its analogues using a Fischer indole reaction, along with a larger gram scale synthesis (4.75 g) of the model compound. These products could then be quickly transformed into their respective fumarate salts, making them easier to handle and stable for long time storage using a straightforward batch procedure.
View Article and Find Full Text PDFChemical engineers heavily rely on precise knowledge of physicochemical properties to model chemical processes. Despite the growing popularity of deep learning, it is only rarely applied for property prediction due to data scarcity and limited accuracy for compounds in industrially-relevant areas of the chemical space. Herein, we present a geometric deep learning framework for predicting gas- and liquid-phase properties based on novel quantum chemical datasets comprising 124,000 molecules.
View Article and Find Full Text PDFThe increasing importance of azaheterocyclic phosphonates in the agrochemical, synthetic, and medicinal field has provoked an intense search in the development of synthetic routes for obtaining novel members of this family of compounds. This updated review covers methodologies established since 2004, focusing on the synthesis of azaheterocyclic phosphonates, of which the phosphonate moiety is directly substituted onto to the azaheterocyclic structure. Emphasizing recent advances, this review classifies newly developed synthetic approaches according to the ring size and providing information on biological activities whenever available.
View Article and Find Full Text PDFWhile organophosphorus chemistry is gaining attention in a variety of fields, the synthesis of the phosphorus derivatives of amino acids remains a challenging task. Previously reported methods require the deprotonation of the nucleophile, complex reagents or hydrolysis of the phosphonate ester. In this paper, we demonstrate how to avoid these issues by employing phosphonylaminium salts for the synthesis of novel mixed -alkylphosphonate diesters or amino acid-derived -alkylphosphonamidates.
View Article and Find Full Text PDFChitosan, sourced from abundant chitin-rich waste streams, emerges as a promising candidate in the realm of future functional materials and chemicals. While showing numerous advantageous properties, chitosan sometimes falls short of competing with today's non-renewable alternatives. Chemical derivatization, particularly through N-alkylation, proves promising in enhancing hydrophobic functionalities.
View Article and Find Full Text PDFThe challenge of devising pathways for organic synthesis remains a central issue in the field of medicinal chemistry. Over the span of six decades, computer-aided synthesis planning has given rise to a plethora of potent tools for formulating synthetic routes. Nevertheless, a significant expert task still looms: determining the appropriate solvent, catalyst, and reagents when provided with a set of reactants to achieve and optimize the desired product for a specific step in the synthesis process.
View Article and Find Full Text PDFConcerns about increasing greenhouse gas emissions and their effect on our environment highlight the urgent need for new sustainable technologies. Visible light photocatalysis allows the clean and selective generation of reactive intermediates under mild conditions. The more widespread adoption of the current generation of photocatalysts, particularly those using precious metals, is hampered by drawbacks such as their cost, toxicity, difficult separation, and limited recyclability.
View Article and Find Full Text PDFSophorolipids, glycolipid biosurfactants derived from microorganisms such as , possess distinctive surface-active and bioactive properties, holding potential applications in cosmetics, pharmaceuticals and bioremediation. However, the limited structural variability in wild-type sophorolipids restricts their properties and applications. To address this, metabolic engineering efforts have allowed to create a portfolio of molecules.
View Article and Find Full Text PDFTumor-associated mesenchymal stem/stromal cells (TA-MSCs) have been recognized as attractive therapeutic targets in several cancer types, due to their ability to enhance tumor growth and angiogenesis and their contribution to an immunosuppressive tumor microenvironment (TME). In glioblastoma (GB), mesenchymal stem cells (MSCs) seem to be recruited to the tumor site, where they differentiate into glioblastoma-associated mesenchymal stem/stromal cells (GA-MSCs) under the influence of tumor cells and the TME. GA-MSCs are reported to exert important protumoral functions, such as promoting tumor growth and invasion, increasing angiogenesis, stimulating glioblastoma stem cell (GSC) proliferation and stemness, mediating resistance to therapy and contributing to an immunosuppressive TME.
View Article and Find Full Text PDFUsing a straightforward sequence of diphosphonylation and a Pd-catalysed concerted-metalation-deprotonation (CMD), a synthetic strategy towards polyaromatic phosphorus containing heterocycles was developed. Herein, we report the synthesis and characterization of new azaphosphaphenalenes, using easily accessible palladium catalysts and starting materials. The key tetrahydroquinoline intermediates of the reaction were synthesised via a fast and effective procedure and could be isolated as such, or further reacted towards the target polyaromatic structures.
View Article and Find Full Text PDFNitrogen (N) fertilization is crucial to sustain global food security, but fertilizer N production is energy-demanding and subsequent environmental N losses contribute to biodiversity loss and climate change. N losses can be mitigated be interfering with microbial nitrification, and therefore the use of nitrification inhibitors in enhanced efficiency fertilizers (EEFs) is an important N management strategy to increase N use efficiency and reduce N pollution. However, currently applied nitrification inhibitors have limitations and do not target all nitrifying microorganisms.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) are emerging as a new class of photoactive organic semiconductors, which possess crystalline ordered structures and high surface areas. COFs can be tailor-made toward specific (photocatalytic) applications, and the size and position of their band gaps can be tuned by the choice of building blocks and linkages. However, many types of building blocks are still unexplored as photocatalytic moieties and the scope of reactions photocatalyzed by COFs remains quite limited.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are considered promising candidates to treat various infections in soft tissues and skin. However, no effective treatment based on AMPs has been reached to clinics due to their instability in serum and wounds. Biosurfactants such as acidic sophorolipids (ASLs) of very high concentrations (equal or above 5 mg/mL) have been demonstrated to be antimicrobial agents, however these concentrations might induce cytotoxic effects to human cells.
View Article and Find Full Text PDFRice bran oil is a highly nutritious vegetable oil, as it is rich in tocols and γ-oryzanol. Degumming is the first step in the vegetable oil refining process, and its main objective is the removal of phospholipids or gums. In the present study, enzymatic degumming trials were performed on crude rice bran oil using the phospholipases PLA1, Purifine PLC, their mixture (PLA1/PLC), and a cocktail known as Purifine 3G.
View Article and Find Full Text PDFRoots are composed of different root types and, in the dicotyledonous Arabidopsis, typically consist of a primary root that branches into lateral roots. Adventitious roots emerge from non-root tissue and are formed upon wounding or other types of abiotic stress. Here, we investigated adventitious root (AR) formation in Arabidopsis hypocotyls under conditions of altered abscisic acid (ABA) signaling.
View Article and Find Full Text PDFThe use of weak and inexpensive bases has recently opened promising perspectives towards the simpler and more sustainable synthesis of Au(I)-aryl complexes with valuable applications in catalysis, medicinal chemistry, and materials science. In recent years, continuous manufacturing has shown to be a reliable partner in establishing sustainable and controlled process scalability. Herein, the first continuous flow synthesis of a range of Au(I)-aryl starting from widely available boronic acids and various [Au(NHC)Cl] (NHC=N-heterocyclic carbene) complexes in unprecedentedly short reaction times and high yields is reported.
View Article and Find Full Text PDFAccurate thermochemistry estimation of polycyclic molecules is crucial for kinetic modeling of chemical processes that use renewable and alternative feedstocks. In kinetic model generators, molecular properties are estimated rapidly with group additivity, but this method is known to have limitations for polycyclic structures. This issue has been resolved in our work by combining a geometry-based molecular representation with a deep neural network trained on data.
View Article and Find Full Text PDFLongitudinal in vivo monitoring of transplanted cells is crucial to perform cancer research or to assess the treatment outcome of cell-based therapies. While several bio-imaging techniques can be used, magnetic resonance imaging (MRI) clearly stands out in terms of high spatial resolution and excellent soft-tissue contrast. However, MRI suffers from low sensitivity, requiring cells to be labeled with high concentrations of contrast agents.
View Article and Find Full Text PDFA new class of biosurfactants, namely quaternary ammonium sophorolipids (SQAS), suitable for pharmaceutical applications, was tested for the evaluation of their (anti)estrogenic and (anti)androgenic potency with the help of YES/YAS assays. Also their toxicity towards yeasts (Saccharomyces cerevisiae) and bacteria (Escherichia coli) was checked. The results achieved for SQAS, which can be regarded as potential micropollutants, were compared with those obtained for two well-known micropollutants diclofenac and 17α-ethinylestradiol subjected to the same testing procedures.
View Article and Find Full Text PDFThe market share of noncontact temperature sensors is expending due to fast technological and medical evolutions. In the wide variety of noncontact sensors, lanthanide-based temperature sensors stand out. They benefit from high photostability, relatively long decay times and high quantum yields.
View Article and Find Full Text PDFThe use of weak bases and mild conditions is currently the most sustainable and attractive synthetic approach for the preparation of late-transition metal complexes, some of which are widely used in catalysis, medicinal chemistry and materials science. Herein, the use of cuprate, aurate or palladate species for a continuous flow preparation of Cu , Au and Pd -NHC complexes is reported. All reactions examined proceed under extremely mild conditions and make use of technical grade acetone as solvent.
View Article and Find Full Text PDFStructurally characterizing new materials is tremendously challenging, especially when single crystal structures are hardly available which is often the case for covalent organic frameworks. Yet, knowledge of the atomic structure is key to establish structure-function relations and enable functional material design. Herein, a new protocol is proposed to unambiguously predict the structure of poorly crystalline materials through a likelihood ordering based on the X-ray diffraction (XRD) pattern.
View Article and Find Full Text PDFPhotocatalytic reduction of molecular oxygen is a promising route toward sustainable production of hydrogen peroxide (HO). This challenging process requires photoactive semiconductors enabling solar energy driven generation and separation of electrons and holes with high charge transfer kinetics. Covalent organic frameworks (COFs) are an emerging class of photoactive semiconductors, tunable at a molecular level for high charge carrier generation and transfer.
View Article and Find Full Text PDFCovalent triazine frameworks (CTFs) with polypyridyl ligands are very promising supports to anchor photocatalytic complexes. Herein, we investigate the photophysical properties of a series of ligands which vary by the extent of the aromatic system, the nitrogen content and their topologies to aid in selecting interesting building blocks for CTFs. Interestingly, some linkers have a rotational degree of freedom, allowing both a trans and cis structure, where only the latter allows anchoring.
View Article and Find Full Text PDF