The concept of recently introduced Cinchona alkaloid-type zwitterionic chiral stationary phases (CSPs) is based on fusing key cation- and anion-exchange (CX, AX) moieties in one single low-molecular mass chiral selector (SO) with the resulting CSPs allowing enantiomer separations of a wide range of chiral ionizable analytes comprising acids, bases, and zwitterionic compounds. Herein, we report principal, systematic investigations of the ion-exchange-type retention mechanisms available with the novel zwitterionic CSPs in nonaqueous polar organic mode. Typical CX and AX processes, corresponding to the parent single ion exchangers, are confirmed also for zwitterionic CSPs.
View Article and Find Full Text PDFNovel chiral stationary phases (CSPs) based on zwitterionic Cinchona alkaloid-type low-molecular mass chiral selectors (SOs), as they have been reported recently, were investigated in HPLC towards effects on their chromatographic behavior by mobile phase composition. Mobile phase characteristics like acid-to-base ratio and type of acidic and basic additives as well as effect of type of bulk solvents in nonaqueous polar organic and aqueous reversed-phase (RP) eluent systems were varied in order to illustrate the variability and applicability of zwitterionic CSPs with regard to mobile phase aspects. Chiral SOs of the five zwitterionic CSPs investigated herein contained weak and strong cation-exchange (WCX, SCX) sites at C9- and C6'-positions of the Cinchona alkaloid scaffold which itself accommodated the weak anion-exchange (WAX) site.
View Article and Find Full Text PDFA recently reported chiral strong cation exchanger (cSCX) type stationary phase was investigated for the LC separation of a series of Cinchona alkaloids and synthetic derivatives thereof to test its usefulness as alternative methodology for the separation of those important pharmaceuticals. The cSCX column-packing material was qualitatively compared on the one hand against a commercially available non-enantioselective SCX-material, PolySulfoethyl-A, and, on the other hand, against a modern C18 reversed-phase stationary phase which is commonly employed for Cinchona alkaloid analysis. Both SCX columns showed no pronounced peak-tailing phenomena which typically hamper Cinchona alkaloid RP analysis and require specific optimization.
View Article and Find Full Text PDFIn an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides.
View Article and Find Full Text PDFA monolithic silica stationary phase functionalized with an enantioselective strong cation exchanger based on an aminosulfonic acid derivative was used for chiral separations of basic test solutes by nonaqueous CEC and capillary LC. The effects of the applied electric field as well as the ionic strength in the eluent on electrokinetic and chromatographic contributions to the overall separation performance in the electrically driven mode were investigated. Hence, under the utilized experimental conditions, i.
View Article and Find Full Text PDFThe preparation of novel brush-type chiral cation-exchange materials based on de novo designed synthetic low molecular mass selectors (SOs) and their evaluation for enantioselective separation of chiral amines by HPLC are presented. The SO as the functional unit for enantioselectivity contains a beta-aminocyclohexanesulfonic acid moiety and is readily accessible via straightforward synthesis in both enantiomeric forms yielding chiral stationary phases (CSPs) with opposite configurations, CSPs 1 and 2, and reversed elution orders. For the evaluation of these novel CSPs by HPLC a sound set of chiral amines, mainly amino-alcohol type drug molecules, was selected.
View Article and Find Full Text PDF